Machine learning for cluster analysis of localization microscopy data
The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5bc574d8c2a043d098ecae44cf7959d5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5bc574d8c2a043d098ecae44cf7959d52021-12-02T15:39:17ZMachine learning for cluster analysis of localization microscopy data10.1038/s41467-020-15293-x2041-1723https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d52020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15293-xhttps://doaj.org/toc/2041-1723The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.David J. WilliamsonGarth L. BurnSabrina SimoncelliJuliette GriffiéRuby PetersDaniel M. DavisDylan M. OwenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q David J. Williamson Garth L. Burn Sabrina Simoncelli Juliette Griffié Ruby Peters Daniel M. Davis Dylan M. Owen Machine learning for cluster analysis of localization microscopy data |
description |
The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity. |
format |
article |
author |
David J. Williamson Garth L. Burn Sabrina Simoncelli Juliette Griffié Ruby Peters Daniel M. Davis Dylan M. Owen |
author_facet |
David J. Williamson Garth L. Burn Sabrina Simoncelli Juliette Griffié Ruby Peters Daniel M. Davis Dylan M. Owen |
author_sort |
David J. Williamson |
title |
Machine learning for cluster analysis of localization microscopy data |
title_short |
Machine learning for cluster analysis of localization microscopy data |
title_full |
Machine learning for cluster analysis of localization microscopy data |
title_fullStr |
Machine learning for cluster analysis of localization microscopy data |
title_full_unstemmed |
Machine learning for cluster analysis of localization microscopy data |
title_sort |
machine learning for cluster analysis of localization microscopy data |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5 |
work_keys_str_mv |
AT davidjwilliamson machinelearningforclusteranalysisoflocalizationmicroscopydata AT garthlburn machinelearningforclusteranalysisoflocalizationmicroscopydata AT sabrinasimoncelli machinelearningforclusteranalysisoflocalizationmicroscopydata AT juliettegriffie machinelearningforclusteranalysisoflocalizationmicroscopydata AT rubypeters machinelearningforclusteranalysisoflocalizationmicroscopydata AT danielmdavis machinelearningforclusteranalysisoflocalizationmicroscopydata AT dylanmowen machinelearningforclusteranalysisoflocalizationmicroscopydata |
_version_ |
1718385932287082496 |