Machine learning for cluster analysis of localization microscopy data

The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.

Guardado en:
Detalles Bibliográficos
Autores principales: David J. Williamson, Garth L. Burn, Sabrina Simoncelli, Juliette Griffié, Ruby Peters, Daniel M. Davis, Dylan M. Owen
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5bc574d8c2a043d098ecae44cf7959d5
record_format dspace
spelling oai:doaj.org-article:5bc574d8c2a043d098ecae44cf7959d52021-12-02T15:39:17ZMachine learning for cluster analysis of localization microscopy data10.1038/s41467-020-15293-x2041-1723https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d52020-03-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-15293-xhttps://doaj.org/toc/2041-1723The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.David J. WilliamsonGarth L. BurnSabrina SimoncelliJuliette GriffiéRuby PetersDaniel M. DavisDylan M. OwenNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-10 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
David J. Williamson
Garth L. Burn
Sabrina Simoncelli
Juliette Griffié
Ruby Peters
Daniel M. Davis
Dylan M. Owen
Machine learning for cluster analysis of localization microscopy data
description The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.
format article
author David J. Williamson
Garth L. Burn
Sabrina Simoncelli
Juliette Griffié
Ruby Peters
Daniel M. Davis
Dylan M. Owen
author_facet David J. Williamson
Garth L. Burn
Sabrina Simoncelli
Juliette Griffié
Ruby Peters
Daniel M. Davis
Dylan M. Owen
author_sort David J. Williamson
title Machine learning for cluster analysis of localization microscopy data
title_short Machine learning for cluster analysis of localization microscopy data
title_full Machine learning for cluster analysis of localization microscopy data
title_fullStr Machine learning for cluster analysis of localization microscopy data
title_full_unstemmed Machine learning for cluster analysis of localization microscopy data
title_sort machine learning for cluster analysis of localization microscopy data
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5
work_keys_str_mv AT davidjwilliamson machinelearningforclusteranalysisoflocalizationmicroscopydata
AT garthlburn machinelearningforclusteranalysisoflocalizationmicroscopydata
AT sabrinasimoncelli machinelearningforclusteranalysisoflocalizationmicroscopydata
AT juliettegriffie machinelearningforclusteranalysisoflocalizationmicroscopydata
AT rubypeters machinelearningforclusteranalysisoflocalizationmicroscopydata
AT danielmdavis machinelearningforclusteranalysisoflocalizationmicroscopydata
AT dylanmowen machinelearningforclusteranalysisoflocalizationmicroscopydata
_version_ 1718385932287082496