Machine learning for cluster analysis of localization microscopy data
The characterization of clusters in single-molecule microscopy data is vital to reconstruct emerging spatial patterns. Here, the authors present a fast and accurate machine-learning approach to clustering, to address the issues related to the size of the data and to sample heterogeneity.
Guardado en:
Autores principales: | David J. Williamson, Garth L. Burn, Sabrina Simoncelli, Juliette Griffié, Ruby Peters, Daniel M. Davis, Dylan M. Owen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bc574d8c2a043d098ecae44cf7959d5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
3D Bayesian cluster analysis of super-resolution data reveals LAT recruitment to the T cell synapse
por: Juliette Griffié, et al.
Publicado: (2017) -
Information-rich localization microscopy through machine learning
por: Taehwan Kim, et al.
Publicado: (2019) -
Rapid and flexible segmentation of electron microscopy data using few-shot machine learning
por: Sarah Akers, et al.
Publicado: (2021) -
Three-dimensional total-internal reflection fluorescence nanoscopy with nanometric axial resolution by photometric localization of single molecules
por: Alan M. Szalai, et al.
Publicado: (2021) -
Unscrambling fluorophore blinking for comprehensive cluster detection via photoactivated localization microscopy
por: René Platzer, et al.
Publicado: (2020)