Direction of arrival estimation in passive radar based on deep neural network
Abstract Most traditional direction of arrival (DOA) estimation methods in passive radar are based on the parametric model of the antenna array manifold, and lack the adaption to the array errors. The data‐driven machine learning‐based methods have great array error adaption capability. However, mos...
Guardado en:
Autores principales: | Xiaoyong Lyu, Jun Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bceb2daf5164291b9f8a8841f4b7316 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
High precision positioning algorithm based on carrier phase and time of arrival
por: Zhenyu Zhang, et al.
Publicado: (2021) -
Micro‐motion parameter extraction of rotating target based on vortex electromagnetic wave radar
por: Hang Yuan, et al.
Publicado: (2021) -
A comprehensive approach to predict a rocket's impact with stochastic estimators and artificial neural networks
por: Jose Abreu, et al.
Publicado: (2021) -
Design of a novel CEM‐FRM‐based low‐complexity channelised radar transmitter
por: Wenxu Zhang, et al.
Publicado: (2021) -
Lightweight Neural Network-Based Viewport Prediction for Live VR Streaming in Wireless Video Sensor Network
por: Xiaolei Chen, et al.
Publicado: (2021)