How to fit models of recognition memory data using maximum likelihood.
The aim of this paper is to provide an introductory tutorial to how to fit different models of recognition memory using maximum likelihood estimation. It is in four main parts. The first part describes how recognition memory data is collected and analysed. The second part introduces four current mod...
Guardado en:
Autor principal: | John C. Dunn |
---|---|
Formato: | article |
Lenguaje: | EN ES |
Publicado: |
Universidad de San Buenaventura
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5bdf50624d1849578f1df57083c75ade |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
One Generalized Mixture Pareto Distribution and Estimation of the Parameters by the EM Algorithm for Complete and Right-Censored Data
por: Mohamed Kayid
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
Bias reduction of a conditional maximum likelihood estimator for a Gaussian second-order moving average model
por: Fumiaki Honda, et al.
Publicado: (2021) -
Maximum Likelihood Localization Method With MIMO-OFDM Transmission
por: Wan Amirul Mahyiddin, et al.
Publicado: (2021) -
Modeling engineering data using extended power-Lindley distribution: Properties and estimation methods
por: Abdulhakim A. Al-Babtain, et al.
Publicado: (2021)