Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus

Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interactio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yan Zhang, Lin An, Jie Xu, Bo Zhang, W. Jim Zheng, Ming Hu, Jijun Tang, Feng Yue
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/5c053d03b3514bb6984fc7751445c963
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data.