Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interactio...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c053d03b3514bb6984fc7751445c963 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c053d03b3514bb6984fc7751445c963 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c053d03b3514bb6984fc7751445c9632021-12-02T17:31:14ZEnhancing Hi-C data resolution with deep convolutional neural network HiCPlus10.1038/s41467-018-03113-22041-1723https://doaj.org/article/5c053d03b3514bb6984fc7751445c9632018-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03113-2https://doaj.org/toc/2041-1723Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data.Yan ZhangLin AnJie XuBo ZhangW. Jim ZhengMing HuJijun TangFeng YueNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Yan Zhang Lin An Jie Xu Bo Zhang W. Jim Zheng Ming Hu Jijun Tang Feng Yue Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
description |
Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data. |
format |
article |
author |
Yan Zhang Lin An Jie Xu Bo Zhang W. Jim Zheng Ming Hu Jijun Tang Feng Yue |
author_facet |
Yan Zhang Lin An Jie Xu Bo Zhang W. Jim Zheng Ming Hu Jijun Tang Feng Yue |
author_sort |
Yan Zhang |
title |
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
title_short |
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
title_full |
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
title_fullStr |
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
title_full_unstemmed |
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus |
title_sort |
enhancing hi-c data resolution with deep convolutional neural network hicplus |
publisher |
Nature Portfolio |
publishDate |
2018 |
url |
https://doaj.org/article/5c053d03b3514bb6984fc7751445c963 |
work_keys_str_mv |
AT yanzhang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT linan enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT jiexu enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT bozhang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT wjimzheng enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT minghu enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT jijuntang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus AT fengyue enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus |
_version_ |
1718380673353383936 |