Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus

Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interactio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yan Zhang, Lin An, Jie Xu, Bo Zhang, W. Jim Zheng, Ming Hu, Jijun Tang, Feng Yue
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/5c053d03b3514bb6984fc7751445c963
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c053d03b3514bb6984fc7751445c963
record_format dspace
spelling oai:doaj.org-article:5c053d03b3514bb6984fc7751445c9632021-12-02T17:31:14ZEnhancing Hi-C data resolution with deep convolutional neural network HiCPlus10.1038/s41467-018-03113-22041-1723https://doaj.org/article/5c053d03b3514bb6984fc7751445c9632018-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03113-2https://doaj.org/toc/2041-1723Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data.Yan ZhangLin AnJie XuBo ZhangW. Jim ZhengMing HuJijun TangFeng YueNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-9 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Yan Zhang
Lin An
Jie Xu
Bo Zhang
W. Jim Zheng
Ming Hu
Jijun Tang
Feng Yue
Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
description Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interaction matrices from low-resolution Hi-C data.
format article
author Yan Zhang
Lin An
Jie Xu
Bo Zhang
W. Jim Zheng
Ming Hu
Jijun Tang
Feng Yue
author_facet Yan Zhang
Lin An
Jie Xu
Bo Zhang
W. Jim Zheng
Ming Hu
Jijun Tang
Feng Yue
author_sort Yan Zhang
title Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
title_short Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
title_full Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
title_fullStr Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
title_full_unstemmed Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
title_sort enhancing hi-c data resolution with deep convolutional neural network hicplus
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/5c053d03b3514bb6984fc7751445c963
work_keys_str_mv AT yanzhang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT linan enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT jiexu enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT bozhang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT wjimzheng enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT minghu enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT jijuntang enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
AT fengyue enhancinghicdataresolutionwithdeepconvolutionalneuralnetworkhicplus
_version_ 1718380673353383936