Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus
Despite its popularity for measuring the spatial organization of mammalian genomes, the resolution of most Hi-C datasets is coarse due to sequencing cost. Here, Zhang et al. develop HiCPlus, a computational approach based on deep convolutional neural network, to infer high-resolution Hi-C interactio...
Guardado en:
Autores principales: | Yan Zhang, Lin An, Jie Xu, Bo Zhang, W. Jim Zheng, Ming Hu, Jijun Tang, Feng Yue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c053d03b3514bb6984fc7751445c963 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identification of significant chromatin contacts from HiChIP data by FitHiChIP
por: Sourya Bhattacharyya, et al.
Publicado: (2019) -
HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP
por: Merve Sahin, et al.
Publicado: (2021) -
In silico prediction of high-resolution Hi-C interaction matrices
por: Shilu Zhang, et al.
Publicado: (2019) -
HiCancer: accurate and complete cancer genome phasing with Hi-C reads
por: Weihua Pan, et al.
Publicado: (2021) -
VEHiCLE: a Variationally Encoded Hi-C Loss Enhancement algorithm for improving and generating Hi-C data
por: Max Highsmith, et al.
Publicado: (2021)