A control framework to optimize public health policies in the course of the COVID-19 pandemic
Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the viru...
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c28e7d9239a41a5856a85e2a273fb8e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c28e7d9239a41a5856a85e2a273fb8e2021-12-02T16:31:54ZA control framework to optimize public health policies in the course of the COVID-19 pandemic10.1038/s41598-021-92636-82045-2322https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92636-8https://doaj.org/toc/2045-2322Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term.Igor M. L. PataroJuliane F. OliveiraMarcelo M. MoratoAlan A. S. AmadPablo I. P. RamosFelipe A. C. PereiraMateus S. SilvaDaniel C. P. JorgeRoberto F. S. AndradeMauricio L. BarretoMarcus Americano da CostaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Igor M. L. Pataro Juliane F. Oliveira Marcelo M. Morato Alan A. S. Amad Pablo I. P. Ramos Felipe A. C. Pereira Mateus S. Silva Daniel C. P. Jorge Roberto F. S. Andrade Mauricio L. Barreto Marcus Americano da Costa A control framework to optimize public health policies in the course of the COVID-19 pandemic |
description |
Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term. |
format |
article |
author |
Igor M. L. Pataro Juliane F. Oliveira Marcelo M. Morato Alan A. S. Amad Pablo I. P. Ramos Felipe A. C. Pereira Mateus S. Silva Daniel C. P. Jorge Roberto F. S. Andrade Mauricio L. Barreto Marcus Americano da Costa |
author_facet |
Igor M. L. Pataro Juliane F. Oliveira Marcelo M. Morato Alan A. S. Amad Pablo I. P. Ramos Felipe A. C. Pereira Mateus S. Silva Daniel C. P. Jorge Roberto F. S. Andrade Mauricio L. Barreto Marcus Americano da Costa |
author_sort |
Igor M. L. Pataro |
title |
A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_short |
A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_full |
A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_fullStr |
A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_full_unstemmed |
A control framework to optimize public health policies in the course of the COVID-19 pandemic |
title_sort |
control framework to optimize public health policies in the course of the covid-19 pandemic |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e |
work_keys_str_mv |
AT igormlpataro acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT julianefoliveira acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT marcelommorato acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT alanasamad acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT pabloipramos acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT felipeacpereira acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT mateusssilva acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT danielcpjorge acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT robertofsandrade acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT mauriciolbarreto acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT marcusamericanodacosta acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT igormlpataro controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT julianefoliveira controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT marcelommorato controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT alanasamad controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT pabloipramos controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT felipeacpereira controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT mateusssilva controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT danielcpjorge controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT robertofsandrade controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT mauriciolbarreto controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic AT marcusamericanodacosta controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic |
_version_ |
1718383810875228160 |