A control framework to optimize public health policies in the course of the COVID-19 pandemic

Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the viru...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Igor M. L. Pataro, Juliane F. Oliveira, Marcelo M. Morato, Alan A. S. Amad, Pablo I. P. Ramos, Felipe A. C. Pereira, Mateus S. Silva, Daniel C. P. Jorge, Roberto F. S. Andrade, Mauricio L. Barreto, Marcus Americano da Costa
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c28e7d9239a41a5856a85e2a273fb8e
record_format dspace
spelling oai:doaj.org-article:5c28e7d9239a41a5856a85e2a273fb8e2021-12-02T16:31:54ZA control framework to optimize public health policies in the course of the COVID-19 pandemic10.1038/s41598-021-92636-82045-2322https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-92636-8https://doaj.org/toc/2045-2322Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term.Igor M. L. PataroJuliane F. OliveiraMarcelo M. MoratoAlan A. S. AmadPablo I. P. RamosFelipe A. C. PereiraMateus S. SilvaDaniel C. P. JorgeRoberto F. S. AndradeMauricio L. BarretoMarcus Americano da CostaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Igor M. L. Pataro
Juliane F. Oliveira
Marcelo M. Morato
Alan A. S. Amad
Pablo I. P. Ramos
Felipe A. C. Pereira
Mateus S. Silva
Daniel C. P. Jorge
Roberto F. S. Andrade
Mauricio L. Barreto
Marcus Americano da Costa
A control framework to optimize public health policies in the course of the COVID-19 pandemic
description Abstract The SARS-CoV-2 pandemic triggered substantial economic and social disruptions. Mitigation policies varied across countries based on resources, political conditions, and human behavior. In the absence of widespread vaccination able to induce herd immunity, strategies to coexist with the virus while minimizing risks of surges are paramount, which should work in parallel with reopening societies. To support these strategies, we present a predictive control system coupled with a nonlinear model able to optimize the level of policies to stop epidemic growth. We applied this system to study the unfolding of COVID-19 in Bahia, Brazil, also assessing the effects of varying population compliance. We show the importance of finely tuning the levels of enforced measures to achieve SARS-CoV-2 containment, with periodic interventions emerging as an optimal control strategy in the long-term.
format article
author Igor M. L. Pataro
Juliane F. Oliveira
Marcelo M. Morato
Alan A. S. Amad
Pablo I. P. Ramos
Felipe A. C. Pereira
Mateus S. Silva
Daniel C. P. Jorge
Roberto F. S. Andrade
Mauricio L. Barreto
Marcus Americano da Costa
author_facet Igor M. L. Pataro
Juliane F. Oliveira
Marcelo M. Morato
Alan A. S. Amad
Pablo I. P. Ramos
Felipe A. C. Pereira
Mateus S. Silva
Daniel C. P. Jorge
Roberto F. S. Andrade
Mauricio L. Barreto
Marcus Americano da Costa
author_sort Igor M. L. Pataro
title A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_short A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_full A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_fullStr A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_full_unstemmed A control framework to optimize public health policies in the course of the COVID-19 pandemic
title_sort control framework to optimize public health policies in the course of the covid-19 pandemic
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5c28e7d9239a41a5856a85e2a273fb8e
work_keys_str_mv AT igormlpataro acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT julianefoliveira acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT marcelommorato acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT alanasamad acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT pabloipramos acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT felipeacpereira acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT mateusssilva acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT danielcpjorge acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT robertofsandrade acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT mauriciolbarreto acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT marcusamericanodacosta acontrolframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT igormlpataro controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT julianefoliveira controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT marcelommorato controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT alanasamad controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT pabloipramos controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT felipeacpereira controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT mateusssilva controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT danielcpjorge controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT robertofsandrade controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT mauriciolbarreto controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
AT marcusamericanodacosta controlframeworktooptimizepublichealthpoliciesinthecourseofthecovid19pandemic
_version_ 1718383810875228160