A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study
Abstract Accurate prediction of graft survival after kidney transplant is limited by the complexity and heterogeneity of risk factors influencing allograft survival. In this study, we applied machine learning methods, in combination with survival statistics, to build new prediction models of graft s...
Enregistré dans:
Auteurs principaux: | Kyung Don Yoo, Junhyug Noh, Hajeong Lee, Dong Ki Kim, Chun Soo Lim, Young Hoon Kim, Jung Pyo Lee, Gunhee Kim, Yon Su Kim |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5c2ccde16bb4430ba399edceb12e297c |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Nationwide Glaucoma incidence in end stage renal disease patients and kidney transplant recipients
par: Jong Joo Moon, et autres
Publié: (2021) -
Incident Parkinson’s disease in kidney transplantation recipients: a nationwide population-based cohort study in Korea
par: Seon Ha Baek, et autres
Publié: (2021) -
Risk factors for Pneumocystis jirovecii pneumonia (PJP) in kidney transplantation recipients
par: Su Hwan Lee, et autres
Publié: (2017) -
Association between neutrophil–lymphocyte ratio change during living donor liver transplantation and graft survival
par: Jungchan Park, et autres
Publié: (2021) -
The relationship of graft survival and herpes simplex virus latency in recipient corneal buttons
par: Orhan Aydemir, et autres
Publié: (2007)