A Machine Learning Approach Using Survival Statistics to Predict Graft Survival in Kidney Transplant Recipients: A Multicenter Cohort Study
Abstract Accurate prediction of graft survival after kidney transplant is limited by the complexity and heterogeneity of risk factors influencing allograft survival. In this study, we applied machine learning methods, in combination with survival statistics, to build new prediction models of graft s...
Guardado en:
Autores principales: | Kyung Don Yoo, Junhyug Noh, Hajeong Lee, Dong Ki Kim, Chun Soo Lim, Young Hoon Kim, Jung Pyo Lee, Gunhee Kim, Yon Su Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c2ccde16bb4430ba399edceb12e297c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Nationwide Glaucoma incidence in end stage renal disease patients and kidney transplant recipients
por: Jong Joo Moon, et al.
Publicado: (2021) -
Incident Parkinson’s disease in kidney transplantation recipients: a nationwide population-based cohort study in Korea
por: Seon Ha Baek, et al.
Publicado: (2021) -
Risk factors for Pneumocystis jirovecii pneumonia (PJP) in kidney transplantation recipients
por: Su Hwan Lee, et al.
Publicado: (2017) -
Association between neutrophil–lymphocyte ratio change during living donor liver transplantation and graft survival
por: Jungchan Park, et al.
Publicado: (2021) -
The relationship of graft survival and herpes simplex virus latency in recipient corneal buttons
por: Orhan Aydemir, et al.
Publicado: (2007)