Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan

The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lander Van Tricht, Chloë Marie Paice, Oleg Rybak, Rysbek Satylkanov, Victor Popovnin, Olga Solomina, Philippe Huybrechts
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/5c3a25d0bb69452d8cb9e515b324dba5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c3a25d0bb69452d8cb9e515b324dba5
record_format dspace
spelling oai:doaj.org-article:5c3a25d0bb69452d8cb9e515b324dba52021-12-01T02:50:44ZReconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan2296-646310.3389/feart.2021.734802https://doaj.org/article/5c3a25d0bb69452d8cb9e515b324dba52021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/feart.2021.734802/fullhttps://doaj.org/toc/2296-6463The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore essential to know how these glaciers behave due to climate change and how they will evolve in the future. In the Soviet era, multiple glaciological monitoring programs were initiated but these were abandoned in the nineties. Recently, they have been re-established on several glaciers. In this study, a reconstruction of the mean specific mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers is obtained using a surface energy mass balance model. The model is driven by temperature and precipitation data acquired by combining multiple datasets from meteorological stations in the vicinity of the glaciers and tree rings in the Kyrgyz Tien Shan between 1750 and 2020. Multi-annual mass balance measurements integrated over elevation bands of 100 m between 2013 and 2020 are used for calibration. A comparison with WGMS data for the second half of the 20th century is performed for Kara-Batkak glacier. The cumulative mass balances are also compared with geodetic mass balances reconstructed for different time periods. Generally, we find a close agreement, indicating a high confidence in the created mass balance series. The last 20 years show a negative mean specific mass balance except for 2008–2009 when a slightly positive mass balance was found. This indicates that the glaciers are currently in imbalance with the present climatic conditions in the area. For the reconstruction back to 1750, this study specifically highlights that it is essential to adapt the glacier geometry since the end of the Little Ice Age in order to not over- or underestimate the mean specific mass balance. The datasets created can be used to get a better insight into how climate change affects glaciers in the Inner Tien Shan and to model the future evolution of these glaciers as well as other glaciers in the region.Lander Van TrichtChloë Marie PaiceOleg RybakOleg RybakOleg RybakRysbek SatylkanovRysbek SatylkanovVictor PopovninOlga SolominaOlga SolominaPhilippe HuybrechtsFrontiers Media S.A.articleglaciersglacier mass balancemass balance modellingTien Shanclimate changehistorical reconstructionScienceQENFrontiers in Earth Science, Vol 9 (2021)
institution DOAJ
collection DOAJ
language EN
topic glaciers
glacier mass balance
mass balance modelling
Tien Shan
climate change
historical reconstruction
Science
Q
spellingShingle glaciers
glacier mass balance
mass balance modelling
Tien Shan
climate change
historical reconstruction
Science
Q
Lander Van Tricht
Chloë Marie Paice
Oleg Rybak
Oleg Rybak
Oleg Rybak
Rysbek Satylkanov
Rysbek Satylkanov
Victor Popovnin
Olga Solomina
Olga Solomina
Philippe Huybrechts
Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
description The mean specific mass balance of a glacier represents the direct link between a glacier and the local climate. Hence, it is intensively monitored throughout the world. In the Kyrgyz Tien Shan, glaciers are of crucial importance with regard to water supply for the surrounding areas. It is therefore essential to know how these glaciers behave due to climate change and how they will evolve in the future. In the Soviet era, multiple glaciological monitoring programs were initiated but these were abandoned in the nineties. Recently, they have been re-established on several glaciers. In this study, a reconstruction of the mean specific mass balance of Bordu, Kara-Batkak and Sary-Tor glaciers is obtained using a surface energy mass balance model. The model is driven by temperature and precipitation data acquired by combining multiple datasets from meteorological stations in the vicinity of the glaciers and tree rings in the Kyrgyz Tien Shan between 1750 and 2020. Multi-annual mass balance measurements integrated over elevation bands of 100 m between 2013 and 2020 are used for calibration. A comparison with WGMS data for the second half of the 20th century is performed for Kara-Batkak glacier. The cumulative mass balances are also compared with geodetic mass balances reconstructed for different time periods. Generally, we find a close agreement, indicating a high confidence in the created mass balance series. The last 20 years show a negative mean specific mass balance except for 2008–2009 when a slightly positive mass balance was found. This indicates that the glaciers are currently in imbalance with the present climatic conditions in the area. For the reconstruction back to 1750, this study specifically highlights that it is essential to adapt the glacier geometry since the end of the Little Ice Age in order to not over- or underestimate the mean specific mass balance. The datasets created can be used to get a better insight into how climate change affects glaciers in the Inner Tien Shan and to model the future evolution of these glaciers as well as other glaciers in the region.
format article
author Lander Van Tricht
Chloë Marie Paice
Oleg Rybak
Oleg Rybak
Oleg Rybak
Rysbek Satylkanov
Rysbek Satylkanov
Victor Popovnin
Olga Solomina
Olga Solomina
Philippe Huybrechts
author_facet Lander Van Tricht
Chloë Marie Paice
Oleg Rybak
Oleg Rybak
Oleg Rybak
Rysbek Satylkanov
Rysbek Satylkanov
Victor Popovnin
Olga Solomina
Olga Solomina
Philippe Huybrechts
author_sort Lander Van Tricht
title Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
title_short Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
title_full Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
title_fullStr Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
title_full_unstemmed Reconstruction of the Historical (1750–2020) Mass Balance of Bordu, Kara-Batkak and Sary-Tor Glaciers in the Inner Tien Shan, Kyrgyzstan
title_sort reconstruction of the historical (1750–2020) mass balance of bordu, kara-batkak and sary-tor glaciers in the inner tien shan, kyrgyzstan
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/5c3a25d0bb69452d8cb9e515b324dba5
work_keys_str_mv AT landervantricht reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT chloemariepaice reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT olegrybak reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT olegrybak reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT olegrybak reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT rysbeksatylkanov reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT rysbeksatylkanov reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT victorpopovnin reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT olgasolomina reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT olgasolomina reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
AT philippehuybrechts reconstructionofthehistorical17502020massbalanceofbordukarabatkakandsarytorglaciersintheinnertienshankyrgyzstan
_version_ 1718405903279980544