Evidence-Based and Explainable Smart Decision Support for Quality Improvement in Stainless Steel Manufacturing

This article demonstrates the use of data mining methods for evidence-based smart decision support in quality control. The data were collected in a measurement campaign which provided a new and potential quality measurement approach for manufacturing process planning and control. In this study, the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Henna Tiensuu, Satu Tamminen, Esa Puukko, Juha Röning
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
GBM
T
Acceso en línea:https://doaj.org/article/5c3d51f894944326a7a553709b4a204f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This article demonstrates the use of data mining methods for evidence-based smart decision support in quality control. The data were collected in a measurement campaign which provided a new and potential quality measurement approach for manufacturing process planning and control. In this study, the machine learning prediction models and Explainable AI methods (XAI) serve as a base for the decision support system for smart manufacturing. The discovered information about the root causes behind the predicted failure can be used to improve the quality, and it also enables the definition of suitable security boundaries for better settings of the production parameters. The user’s need defines the given type of information. The developed method is applied to the monitoring of the surface roughness of the stainless steel strip, but the framework is not application dependent. The modeling analysis reveals that the parameters of the annealing and pickling line (RAP) have the best potential for real-time roughness improvement.