Evidence-Based and Explainable Smart Decision Support for Quality Improvement in Stainless Steel Manufacturing
This article demonstrates the use of data mining methods for evidence-based smart decision support in quality control. The data were collected in a measurement campaign which provided a new and potential quality measurement approach for manufacturing process planning and control. In this study, the...
Guardado en:
Autores principales: | Henna Tiensuu, Satu Tamminen, Esa Puukko, Juha Röning |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c3d51f894944326a7a553709b4a204f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A LIME-Based Explainable Machine Learning Model for Predicting the Severity Level of COVID-19 Diagnosed Patients
por: Freddy Gabbay, et al.
Publicado: (2021) -
Neural Network Explainable AI Based on Paraconsistent Analysis: An Extension
por: Francisco S. Marcondes, et al.
Publicado: (2021) -
Social Botomics: A Systematic Ensemble ML Approach for Explainable and Multi-Class Bot Detection
por: Ilias Dimitriadis, et al.
Publicado: (2021) -
Explainable Artificial Intelligence for Human-Machine Interaction in Brain Tumor Localization
por: Morteza Esmaeili, et al.
Publicado: (2021) -
Machine Learning and Data-Driven Techniques for the Control of Smart Power Generation Systems: An Uncertainty Handling Perspective
por: Li Sun, et al.
Publicado: (2021)