Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be expla...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Physical Society
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c3f4483887e4f88b835d2ffe5803488 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c3f4483887e4f88b835d2ffe5803488 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c3f4483887e4f88b835d2ffe58034882021-12-02T14:23:38ZMagnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}10.1103/PhysRevX.10.0410622160-3308https://doaj.org/article/5c3f4483887e4f88b835d2ffe58034882020-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041062http://doi.org/10.1103/PhysRevX.10.041062https://doaj.org/toc/2160-3308We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be explained by an orbital model in the presence of strongly anisotropic quasiparticle spectra and scattering time due to antiferromagnetism. In optimally doped samples, the magnetoresistance is controlled by the properties of small regions of the Fermi surface called “hot spots,” where antiferromagnetic excitations induce a large quasiparticle scattering rate. The anisotropic scattering rate results in hyperbolic H/T magnetoresistance scaling, which competes with the more conventional Kohler scaling. We argue that these results constitute a coherent picture of magnetotransport in BaFe_{2}(As_{1-x}P_{x})_{2}, which links the origin of H-linear resistivity to antiferromagnetic hot spots. Implications for the T-linear resistivity at zero field are discussed.Nikola MaksimovicIan M. HayesVikram NagarajanJames G. AnalytisAlexei E. KoshelevJohn SingletonYeonbae LeeThomas SchenkelAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041062 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Physics QC1-999 |
spellingShingle |
Physics QC1-999 Nikola Maksimovic Ian M. Hayes Vikram Nagarajan James G. Analytis Alexei E. Koshelev John Singleton Yeonbae Lee Thomas Schenkel Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
description |
We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be explained by an orbital model in the presence of strongly anisotropic quasiparticle spectra and scattering time due to antiferromagnetism. In optimally doped samples, the magnetoresistance is controlled by the properties of small regions of the Fermi surface called “hot spots,” where antiferromagnetic excitations induce a large quasiparticle scattering rate. The anisotropic scattering rate results in hyperbolic H/T magnetoresistance scaling, which competes with the more conventional Kohler scaling. We argue that these results constitute a coherent picture of magnetotransport in BaFe_{2}(As_{1-x}P_{x})_{2}, which links the origin of H-linear resistivity to antiferromagnetic hot spots. Implications for the T-linear resistivity at zero field are discussed. |
format |
article |
author |
Nikola Maksimovic Ian M. Hayes Vikram Nagarajan James G. Analytis Alexei E. Koshelev John Singleton Yeonbae Lee Thomas Schenkel |
author_facet |
Nikola Maksimovic Ian M. Hayes Vikram Nagarajan James G. Analytis Alexei E. Koshelev John Singleton Yeonbae Lee Thomas Schenkel |
author_sort |
Nikola Maksimovic |
title |
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
title_short |
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
title_full |
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
title_fullStr |
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
title_full_unstemmed |
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2} |
title_sort |
magnetoresistance scaling and the origin of h-linear resistivity in bafe_{2}(as_{1-x}p_{x})_{2} |
publisher |
American Physical Society |
publishDate |
2020 |
url |
https://doaj.org/article/5c3f4483887e4f88b835d2ffe5803488 |
work_keys_str_mv |
AT nikolamaksimovic magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT ianmhayes magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT vikramnagarajan magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT jamesganalytis magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT alexeiekoshelev magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT johnsingleton magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT yeonbaelee magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 AT thomasschenkel magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2 |
_version_ |
1718391427931570176 |