Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}

We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be expla...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nikola Maksimovic, Ian M. Hayes, Vikram Nagarajan, James G. Analytis, Alexei E. Koshelev, John Singleton, Yeonbae Lee, Thomas Schenkel
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2020
Materias:
Acceso en línea:https://doaj.org/article/5c3f4483887e4f88b835d2ffe5803488
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c3f4483887e4f88b835d2ffe5803488
record_format dspace
spelling oai:doaj.org-article:5c3f4483887e4f88b835d2ffe58034882021-12-02T14:23:38ZMagnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}10.1103/PhysRevX.10.0410622160-3308https://doaj.org/article/5c3f4483887e4f88b835d2ffe58034882020-12-01T00:00:00Zhttp://doi.org/10.1103/PhysRevX.10.041062http://doi.org/10.1103/PhysRevX.10.041062https://doaj.org/toc/2160-3308We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be explained by an orbital model in the presence of strongly anisotropic quasiparticle spectra and scattering time due to antiferromagnetism. In optimally doped samples, the magnetoresistance is controlled by the properties of small regions of the Fermi surface called “hot spots,” where antiferromagnetic excitations induce a large quasiparticle scattering rate. The anisotropic scattering rate results in hyperbolic H/T magnetoresistance scaling, which competes with the more conventional Kohler scaling. We argue that these results constitute a coherent picture of magnetotransport in BaFe_{2}(As_{1-x}P_{x})_{2}, which links the origin of H-linear resistivity to antiferromagnetic hot spots. Implications for the T-linear resistivity at zero field are discussed.Nikola MaksimovicIan M. HayesVikram NagarajanJames G. AnalytisAlexei E. KoshelevJohn SingletonYeonbae LeeThomas SchenkelAmerican Physical SocietyarticlePhysicsQC1-999ENPhysical Review X, Vol 10, Iss 4, p 041062 (2020)
institution DOAJ
collection DOAJ
language EN
topic Physics
QC1-999
spellingShingle Physics
QC1-999
Nikola Maksimovic
Ian M. Hayes
Vikram Nagarajan
James G. Analytis
Alexei E. Koshelev
John Singleton
Yeonbae Lee
Thomas Schenkel
Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
description We explore field and temperature scaling of magnetoresistance in underdoped (x=0, x=0.19) and optimally doped (x=0.31) samples of the high-temperature superconductor BaFe_{2}(As_{1-x}P_{x})_{2}. In all cases, the magnetoresistance is H linear at high fields. We demonstrate that the data can be explained by an orbital model in the presence of strongly anisotropic quasiparticle spectra and scattering time due to antiferromagnetism. In optimally doped samples, the magnetoresistance is controlled by the properties of small regions of the Fermi surface called “hot spots,” where antiferromagnetic excitations induce a large quasiparticle scattering rate. The anisotropic scattering rate results in hyperbolic H/T magnetoresistance scaling, which competes with the more conventional Kohler scaling. We argue that these results constitute a coherent picture of magnetotransport in BaFe_{2}(As_{1-x}P_{x})_{2}, which links the origin of H-linear resistivity to antiferromagnetic hot spots. Implications for the T-linear resistivity at zero field are discussed.
format article
author Nikola Maksimovic
Ian M. Hayes
Vikram Nagarajan
James G. Analytis
Alexei E. Koshelev
John Singleton
Yeonbae Lee
Thomas Schenkel
author_facet Nikola Maksimovic
Ian M. Hayes
Vikram Nagarajan
James G. Analytis
Alexei E. Koshelev
John Singleton
Yeonbae Lee
Thomas Schenkel
author_sort Nikola Maksimovic
title Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
title_short Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
title_full Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
title_fullStr Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
title_full_unstemmed Magnetoresistance Scaling and the Origin of H-Linear Resistivity in BaFe_{2}(As_{1-x}P_{x})_{2}
title_sort magnetoresistance scaling and the origin of h-linear resistivity in bafe_{2}(as_{1-x}p_{x})_{2}
publisher American Physical Society
publishDate 2020
url https://doaj.org/article/5c3f4483887e4f88b835d2ffe5803488
work_keys_str_mv AT nikolamaksimovic magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT ianmhayes magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT vikramnagarajan magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT jamesganalytis magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT alexeiekoshelev magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT johnsingleton magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT yeonbaelee magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
AT thomasschenkel magnetoresistancescalingandtheoriginofhlinearresistivityinbafe2as1xpx2
_version_ 1718391427931570176