Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations

This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the ϕ-Laplacian equation (ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0, where ϕ is a homeomorphism with ϕ(0) = 0, a(t) is a stepwise indef...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Boscaggin Alberto, Feltrin Guglielmo, Zanolin Fabio
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/5c429e8e95bf4301b19123687f3424c9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the ϕ-Laplacian equation (ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0, where ϕ is a homeomorphism with ϕ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator ϕ(s) = ∣s∣p−2 s with p > 1, and the nonlinear term g(u) = u γ with γ∈R\gamma \in {\mathbb{R}}, we prove the existence of a unique positive solution when γ ∈ ]−∞\infty , (1 − 2p)/(p − 1)] ∪ ]p − 1, +∞\infty [.