Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations
This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the ϕ-Laplacian equation (ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0, where ϕ is a homeomorphism with ϕ(0) = 0, a(t) is a stepwise indef...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c429e8e95bf4301b19123687f3424c9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c429e8e95bf4301b19123687f3424c9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c429e8e95bf4301b19123687f3424c92021-12-05T14:10:52ZUniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations2391-545510.1515/math-2021-0003https://doaj.org/article/5c429e8e95bf4301b19123687f3424c92021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0003https://doaj.org/toc/2391-5455This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the ϕ-Laplacian equation (ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0, where ϕ is a homeomorphism with ϕ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator ϕ(s) = ∣s∣p−2 s with p > 1, and the nonlinear term g(u) = u γ with γ∈R\gamma \in {\mathbb{R}}, we prove the existence of a unique positive solution when γ ∈ ]−∞\infty , (1 − 2p)/(p − 1)] ∪ ]p − 1, +∞\infty [.Boscaggin AlbertoFeltrin GuglielmoZanolin FabioDe Gruyterarticleuniquenessindefinite weightpositive solutionsp-laplacianboundary value problemssuperlinear functionssingular equations34b1534b1634b1834c25MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 163-183 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
uniqueness indefinite weight positive solutions p-laplacian boundary value problems superlinear functions singular equations 34b15 34b16 34b18 34c25 Mathematics QA1-939 |
spellingShingle |
uniqueness indefinite weight positive solutions p-laplacian boundary value problems superlinear functions singular equations 34b15 34b16 34b18 34c25 Mathematics QA1-939 Boscaggin Alberto Feltrin Guglielmo Zanolin Fabio Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
description |
This paper provides a uniqueness result for positive solutions of the Neumann and periodic boundary value problems associated with the ϕ-Laplacian equation (ϕ(u′))′+a(t)g(u)=0,(\phi \left(u^{\prime} ))^{\prime} +a\left(t)g\left(u)=0, where ϕ is a homeomorphism with ϕ(0) = 0, a(t) is a stepwise indefinite weight and g(u) is a continuous function. When dealing with the p-Laplacian differential operator ϕ(s) = ∣s∣p−2
s with p > 1, and the nonlinear term g(u) = u
γ with γ∈R\gamma \in {\mathbb{R}}, we prove the existence of a unique positive solution when γ ∈ ]−∞\infty , (1 − 2p)/(p − 1)] ∪ ]p − 1, +∞\infty [. |
format |
article |
author |
Boscaggin Alberto Feltrin Guglielmo Zanolin Fabio |
author_facet |
Boscaggin Alberto Feltrin Guglielmo Zanolin Fabio |
author_sort |
Boscaggin Alberto |
title |
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
title_short |
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
title_full |
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
title_fullStr |
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
title_full_unstemmed |
Uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-Laplacian-type equations |
title_sort |
uniqueness of positive solutions for boundary value problems associated with indefinite ϕ-laplacian-type equations |
publisher |
De Gruyter |
publishDate |
2021 |
url |
https://doaj.org/article/5c429e8e95bf4301b19123687f3424c9 |
work_keys_str_mv |
AT boscagginalberto uniquenessofpositivesolutionsforboundaryvalueproblemsassociatedwithindefinitephlaplaciantypeequations AT feltringuglielmo uniquenessofpositivesolutionsforboundaryvalueproblemsassociatedwithindefinitephlaplaciantypeequations AT zanolinfabio uniquenessofpositivesolutionsforboundaryvalueproblemsassociatedwithindefinitephlaplaciantypeequations |
_version_ |
1718371645023846400 |