Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells

Abstract Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutation...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Carmela Rieline V. Cruz, Jose Lorenzo M. Ferrer, Reynaldo L. Garcia
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5c456273dd554cc4b283e35fc9ed7419
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c456273dd554cc4b283e35fc9ed7419
record_format dspace
spelling oai:doaj.org-article:5c456273dd554cc4b283e35fc9ed74192021-12-02T18:50:48ZConcomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells10.1038/s41598-021-97869-12045-2322https://doaj.org/article/5c456273dd554cc4b283e35fc9ed74192021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-97869-1https://doaj.org/toc/2045-2322Abstract Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutations. The contribution of noncoding RNAs (ncRNAs) in the pathogenesis of lung cancer has since been demonstrated. Their dysregulation has been linked to cancer initiation and progression. A novel long noncoding RNA (lncRNA) called smoke and cancer-associated lncRNA 1 (SCAL1) was recently found upregulated in smoke-exposed adenocarcinomic alveolar epithelial cells. The present study characterized the phenotypic consequences of SCAL1 overexpression and knockdown using A549 cells as model system, with or without prior exposure to cigarette smoke extract (CSE). Increase in SCAL1 levels either by CSE treatment or SCAL1 overexpression led to increased cell migration, extensive cytoskeletal remodeling, and resistance to apoptosis. Further, SCAL1 levels were negatively correlated with intracellular levels of reactive oxygen species (ROS). In contrast, SCAL1 knockdown showed converse results for these assays. These results confirm the oncogenic function of SCAL1 and its role as a CSE-activated lncRNA that mediates ROS detoxification in A549 cells, thereby allowing them to develop resistance to and survive smoke-induced toxicity.Carmela Rieline V. CruzJose Lorenzo M. FerrerReynaldo L. GarciaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Carmela Rieline V. Cruz
Jose Lorenzo M. Ferrer
Reynaldo L. Garcia
Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
description Abstract Lung cancer is the leading cause of cancer deaths worldwide, with smoking as its primary predisposing factor. Although carcinogens in cigarettes are known to cause oncogenic DNA alterations, analyses of patient cohorts revealed heterogeneous genetic aberrations with no clear driver mutations. The contribution of noncoding RNAs (ncRNAs) in the pathogenesis of lung cancer has since been demonstrated. Their dysregulation has been linked to cancer initiation and progression. A novel long noncoding RNA (lncRNA) called smoke and cancer-associated lncRNA 1 (SCAL1) was recently found upregulated in smoke-exposed adenocarcinomic alveolar epithelial cells. The present study characterized the phenotypic consequences of SCAL1 overexpression and knockdown using A549 cells as model system, with or without prior exposure to cigarette smoke extract (CSE). Increase in SCAL1 levels either by CSE treatment or SCAL1 overexpression led to increased cell migration, extensive cytoskeletal remodeling, and resistance to apoptosis. Further, SCAL1 levels were negatively correlated with intracellular levels of reactive oxygen species (ROS). In contrast, SCAL1 knockdown showed converse results for these assays. These results confirm the oncogenic function of SCAL1 and its role as a CSE-activated lncRNA that mediates ROS detoxification in A549 cells, thereby allowing them to develop resistance to and survive smoke-induced toxicity.
format article
author Carmela Rieline V. Cruz
Jose Lorenzo M. Ferrer
Reynaldo L. Garcia
author_facet Carmela Rieline V. Cruz
Jose Lorenzo M. Ferrer
Reynaldo L. Garcia
author_sort Carmela Rieline V. Cruz
title Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
title_short Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
title_full Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
title_fullStr Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
title_full_unstemmed Concomitant and decoupled effects of cigarette smoke and SCAL1 upregulation on oncogenic phenotypes and ROS detoxification in lung adenocarcinoma cells
title_sort concomitant and decoupled effects of cigarette smoke and scal1 upregulation on oncogenic phenotypes and ros detoxification in lung adenocarcinoma cells
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/5c456273dd554cc4b283e35fc9ed7419
work_keys_str_mv AT carmelarielinevcruz concomitantanddecoupledeffectsofcigarettesmokeandscal1upregulationononcogenicphenotypesandrosdetoxificationinlungadenocarcinomacells
AT joselorenzomferrer concomitantanddecoupledeffectsofcigarettesmokeandscal1upregulationononcogenicphenotypesandrosdetoxificationinlungadenocarcinomacells
AT reynaldolgarcia concomitantanddecoupledeffectsofcigarettesmokeandscal1upregulationononcogenicphenotypesandrosdetoxificationinlungadenocarcinomacells
_version_ 1718377505180614656