Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer

Colonoscopy is the most commonly used tool to screen for colorectal cancer (CRC). Here, the authors develop a deep learning model to perform optical diagnosis of CRC by training on a large data set of white-light colonoscopy images and achieve endoscopist-level performance on three independent datas...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Dejun Zhou, Fei Tian, Xiangdong Tian, Lin Sun, Xianghui Huang, Feng Zhao, Nan Zhou, Zuoyu Chen, Qiang Zhang, Meng Yang, Yichen Yang, Xuexi Guo, Zhibin Li, Jia Liu, Jiefu Wang, Junfeng Wang, Bangmao Wang, Guoliang Zhang, Baocun Sun, Wei Zhang, Dalu Kong, Kexin Chen, Xiangchun Li
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5c46ece027b64112af1315b6221f8c2b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5c46ece027b64112af1315b6221f8c2b
record_format dspace
spelling oai:doaj.org-article:5c46ece027b64112af1315b6221f8c2b2021-12-02T17:52:29ZDiagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer10.1038/s41467-020-16777-62041-1723https://doaj.org/article/5c46ece027b64112af1315b6221f8c2b2020-06-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-16777-6https://doaj.org/toc/2041-1723Colonoscopy is the most commonly used tool to screen for colorectal cancer (CRC). Here, the authors develop a deep learning model to perform optical diagnosis of CRC by training on a large data set of white-light colonoscopy images and achieve endoscopist-level performance on three independent datasets.Dejun ZhouFei TianXiangdong TianLin SunXianghui HuangFeng ZhaoNan ZhouZuoyu ChenQiang ZhangMeng YangYichen YangXuexi GuoZhibin LiJia LiuJiefu WangJunfeng WangBangmao WangGuoliang ZhangBaocun SunWei ZhangDalu KongKexin ChenXiangchun LiNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-9 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Dejun Zhou
Fei Tian
Xiangdong Tian
Lin Sun
Xianghui Huang
Feng Zhao
Nan Zhou
Zuoyu Chen
Qiang Zhang
Meng Yang
Yichen Yang
Xuexi Guo
Zhibin Li
Jia Liu
Jiefu Wang
Junfeng Wang
Bangmao Wang
Guoliang Zhang
Baocun Sun
Wei Zhang
Dalu Kong
Kexin Chen
Xiangchun Li
Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
description Colonoscopy is the most commonly used tool to screen for colorectal cancer (CRC). Here, the authors develop a deep learning model to perform optical diagnosis of CRC by training on a large data set of white-light colonoscopy images and achieve endoscopist-level performance on three independent datasets.
format article
author Dejun Zhou
Fei Tian
Xiangdong Tian
Lin Sun
Xianghui Huang
Feng Zhao
Nan Zhou
Zuoyu Chen
Qiang Zhang
Meng Yang
Yichen Yang
Xuexi Guo
Zhibin Li
Jia Liu
Jiefu Wang
Junfeng Wang
Bangmao Wang
Guoliang Zhang
Baocun Sun
Wei Zhang
Dalu Kong
Kexin Chen
Xiangchun Li
author_facet Dejun Zhou
Fei Tian
Xiangdong Tian
Lin Sun
Xianghui Huang
Feng Zhao
Nan Zhou
Zuoyu Chen
Qiang Zhang
Meng Yang
Yichen Yang
Xuexi Guo
Zhibin Li
Jia Liu
Jiefu Wang
Junfeng Wang
Bangmao Wang
Guoliang Zhang
Baocun Sun
Wei Zhang
Dalu Kong
Kexin Chen
Xiangchun Li
author_sort Dejun Zhou
title Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
title_short Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
title_full Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
title_fullStr Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
title_full_unstemmed Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
title_sort diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5c46ece027b64112af1315b6221f8c2b
work_keys_str_mv AT dejunzhou diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT feitian diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT xiangdongtian diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT linsun diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT xianghuihuang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT fengzhao diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT nanzhou diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT zuoyuchen diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT qiangzhang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT mengyang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT yichenyang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT xuexiguo diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT zhibinli diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT jialiu diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT jiefuwang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT junfengwang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT bangmaowang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT guoliangzhang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT baocunsun diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT weizhang diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT dalukong diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT kexinchen diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
AT xiangchunli diagnosticevaluationofadeeplearningmodelforopticaldiagnosisofcolorectalcancer
_version_ 1718379170120073216