Diagnostic evaluation of a deep learning model for optical diagnosis of colorectal cancer
Colonoscopy is the most commonly used tool to screen for colorectal cancer (CRC). Here, the authors develop a deep learning model to perform optical diagnosis of CRC by training on a large data set of white-light colonoscopy images and achieve endoscopist-level performance on three independent datas...
Enregistré dans:
Auteurs principaux: | Dejun Zhou, Fei Tian, Xiangdong Tian, Lin Sun, Xianghui Huang, Feng Zhao, Nan Zhou, Zuoyu Chen, Qiang Zhang, Meng Yang, Yichen Yang, Xuexi Guo, Zhibin Li, Jia Liu, Jiefu Wang, Junfeng Wang, Bangmao Wang, Guoliang Zhang, Baocun Sun, Wei Zhang, Dalu Kong, Kexin Chen, Xiangchun Li |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5c46ece027b64112af1315b6221f8c2b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Long Non-Coding RNA CCAT2 Activates RAB14 and Acts as an Oncogene in Colorectal Cancer
par: Dalu Wang, et autres
Publié: (2021) -
Miscell: An efficient self-supervised learning approach for dissecting single-cell transcriptome
par: Hongru Shen, et autres
Publié: (2021) -
PRMT3 promotes tumorigenesis by methylating and stabilizing HIF1α in colorectal cancer
par: Xin Zhang, et autres
Publié: (2021) -
Novel lipophilic SN38 prodrug forming stable liposomes for colorectal carcinoma therapy
par: Xing J, et autres
Publié: (2019) -
Quantum sensing of noises in one and two dimensional quantum walks
par: Tian Chen, et autres
Publié: (2017)