Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil
Abstract Plants have difficulty absorbing phosphorus from volcanic ash soils owing to the adsorption of phosphorus by aluminum and iron in the soils. Thus, on volcanic ash soils, the phosphorus source for natural vegetation is expected to be organic matter, however, there is a lack of experimental e...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c49ed0429d94dc59b3173be656394f9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c49ed0429d94dc59b3173be656394f9 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c49ed0429d94dc59b3173be656394f92021-12-02T15:56:41ZFresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil10.1038/s41598-021-91078-62045-2322https://doaj.org/article/5c49ed0429d94dc59b3173be656394f92021-06-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-91078-6https://doaj.org/toc/2045-2322Abstract Plants have difficulty absorbing phosphorus from volcanic ash soils owing to the adsorption of phosphorus by aluminum and iron in the soils. Thus, on volcanic ash soils, the phosphorus source for natural vegetation is expected to be organic matter, however, there is a lack of experimental evidence regarding this occurrence. Here, we studied the effect of organic matter on plant growth of some species that occur in primary successions of volcanic ash soil ecosystems, based on growth experiments and chemical analyses. We found that a large amount of inorganic phosphorus (but only a limited amount of inorganic nitrogen) is leached from fresh leaf litter of the pioneer spices Fallopia japonica at the initial stage of litter decomposition. Phosphorus from the fresh litter specifically activated the growth of subsequently invading nitrogen-fixing alder when immature volcanic soil was used for cultivation. In contrast, old organic matter in mature soil was merely a minor source of phosphorus. These results suggest that fresh litter of F. japonica is essential for growth of nitrogen-fixing alder because the litter supplies phosphorus. We consider that rapid phosphorus cycles in fresh litter-plant systems underlie the productivity of natural vegetation even in mature ecosystems established on volcanic ash soils.Sae KatayamaTakayuki OmoriMasaki TatenoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Sae Katayama Takayuki Omori Masaki Tateno Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
description |
Abstract Plants have difficulty absorbing phosphorus from volcanic ash soils owing to the adsorption of phosphorus by aluminum and iron in the soils. Thus, on volcanic ash soils, the phosphorus source for natural vegetation is expected to be organic matter, however, there is a lack of experimental evidence regarding this occurrence. Here, we studied the effect of organic matter on plant growth of some species that occur in primary successions of volcanic ash soil ecosystems, based on growth experiments and chemical analyses. We found that a large amount of inorganic phosphorus (but only a limited amount of inorganic nitrogen) is leached from fresh leaf litter of the pioneer spices Fallopia japonica at the initial stage of litter decomposition. Phosphorus from the fresh litter specifically activated the growth of subsequently invading nitrogen-fixing alder when immature volcanic soil was used for cultivation. In contrast, old organic matter in mature soil was merely a minor source of phosphorus. These results suggest that fresh litter of F. japonica is essential for growth of nitrogen-fixing alder because the litter supplies phosphorus. We consider that rapid phosphorus cycles in fresh litter-plant systems underlie the productivity of natural vegetation even in mature ecosystems established on volcanic ash soils. |
format |
article |
author |
Sae Katayama Takayuki Omori Masaki Tateno |
author_facet |
Sae Katayama Takayuki Omori Masaki Tateno |
author_sort |
Sae Katayama |
title |
Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
title_short |
Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
title_full |
Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
title_fullStr |
Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
title_full_unstemmed |
Fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
title_sort |
fresh litter acts as a substantial phosphorus source of plant species appearing in primary succession on volcanic ash soil |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/5c49ed0429d94dc59b3173be656394f9 |
work_keys_str_mv |
AT saekatayama freshlitteractsasasubstantialphosphorussourceofplantspeciesappearinginprimarysuccessiononvolcanicashsoil AT takayukiomori freshlitteractsasasubstantialphosphorussourceofplantspeciesappearinginprimarysuccessiononvolcanicashsoil AT masakitateno freshlitteractsasasubstantialphosphorussourceofplantspeciesappearinginprimarysuccessiononvolcanicashsoil |
_version_ |
1718385393456381952 |