Analysis of fault diagnosis of DC motors by power consumption pattern recognition

Early detection of faults in DC motors extends their life and lowers their power usage. There are a variety of traditional and soft computing techniques for detecting faults in DC motors. Many diagnostic techniques have been developed in the past to detect such fault-related patterns. These methods...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hasan Shakir Majdi, Sameera Sadey Shijer, Abduljabbar Owaid Hanfesh, Laith Jaafer Habeeb, Ahmad H. Sabry
Formato: article
Lenguaje:EN
RU
UK
Publicado: PC Technology Center 2021
Materias:
Acceso en línea:https://doaj.org/article/5c585ebea0ac4fd48fbc63e9a894ec2b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Early detection of faults in DC motors extends their life and lowers their power usage. There are a variety of traditional and soft computing techniques for detecting faults in DC motors. Many diagnostic techniques have been developed in the past to detect such fault-related patterns. These methods for detecting the aforementioned potential failures of motors can be utilized in a variety of scientific and technological domains. Motor Power Pattern Analysis (MPPA) is a technology that analyzes the current and voltage provided to an electric motor using particular patterns and protocols to assess the operational status of the motors without disrupting production. Engineers and researchers, particularly in industries, face a difficult challenge in monitoring spinning types of equipment. In this work, we are going to explain how to use the motor power pattern/signature analysis (MPPA) of a power signal driving a servo to find mechanical defects in a gear train. A hardware setup is used to simplify the demonstration of obtaining spectral metrics from the power consumption signals. A DC motor, a set of metal or nylon drive gears, and a control circuit are employed. The speed control circuit was eliminated to allow direct monitoring of the DC motor's current profiles. Infrared (IR) photo-interrupters with a 35 mm diameter, eight-holed, standard servo wheel were employed to gather the tachometer signal at the servo's output. The mean value of the measurements was 318 V for the healthy profile, while it was 330 V for the faulty gears power data. The proposed power consumption profile analysis approach succeeds to recognize the mechanical faults in the gear-box of a DC servomotor via examining the mean level of the power consumption pattern as well as the extraction of the Power Spectral Density (PSD) through comparing faulty and healthy profiles