On Rings of Weak Global Dimension at Most One
A ring <i>R</i> is of weak global dimension at most one if all submodules of flat <i>R</i>-modules are flat. A ring <i>R</i> is said to be arithmetical (resp., right distributive or left distributive) if the lattice of two-sided ideals (resp., right ideals or left...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c5cf4efd24047c2b07073b2729c4f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5c5cf4efd24047c2b07073b2729c4f6f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5c5cf4efd24047c2b07073b2729c4f6f2021-11-11T18:13:31ZOn Rings of Weak Global Dimension at Most One10.3390/math92126432227-7390https://doaj.org/article/5c5cf4efd24047c2b07073b2729c4f6f2021-10-01T00:00:00Zhttps://www.mdpi.com/2227-7390/9/21/2643https://doaj.org/toc/2227-7390A ring <i>R</i> is of weak global dimension at most one if all submodules of flat <i>R</i>-modules are flat. A ring <i>R</i> is said to be arithmetical (resp., right distributive or left distributive) if the lattice of two-sided ideals (resp., right ideals or left ideals) of <i>R</i> is distributive. Jensen has proved earlier that a commutative ring <i>R</i> is a ring of weak global dimension at most one if and only if <i>R</i> is an arithmetical semiprime ring. A ring <i>R</i> is said to be centrally essential if either <i>R</i> is commutative or, for every noncentral element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula>, there exist two nonzero central elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mi>z</mi></mrow></semantics></math></inline-formula>. In Theorem 2 of our paper, we prove that a centrally essential ring <i>R</i> is of weak global dimension at most one if and only is <i>R</i> is a right or left distributive semiprime ring. We give examples that Theorem 2 is not true for arbitrary rings.Askar TuganbaevMDPI AGarticlering of weak global dimension at most onecentrally essential ringarithmetical ringright distributive ringleft distributive ringMathematicsQA1-939ENMathematics, Vol 9, Iss 2643, p 2643 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
ring of weak global dimension at most one centrally essential ring arithmetical ring right distributive ring left distributive ring Mathematics QA1-939 |
spellingShingle |
ring of weak global dimension at most one centrally essential ring arithmetical ring right distributive ring left distributive ring Mathematics QA1-939 Askar Tuganbaev On Rings of Weak Global Dimension at Most One |
description |
A ring <i>R</i> is of weak global dimension at most one if all submodules of flat <i>R</i>-modules are flat. A ring <i>R</i> is said to be arithmetical (resp., right distributive or left distributive) if the lattice of two-sided ideals (resp., right ideals or left ideals) of <i>R</i> is distributive. Jensen has proved earlier that a commutative ring <i>R</i> is a ring of weak global dimension at most one if and only if <i>R</i> is an arithmetical semiprime ring. A ring <i>R</i> is said to be centrally essential if either <i>R</i> is commutative or, for every noncentral element <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula>, there exist two nonzero central elements <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>y</mi><mo>,</mo><mi>z</mi><mo>∈</mo><mi>R</mi></mrow></semantics></math></inline-formula> with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>x</mi><mi>y</mi><mo>=</mo><mi>z</mi></mrow></semantics></math></inline-formula>. In Theorem 2 of our paper, we prove that a centrally essential ring <i>R</i> is of weak global dimension at most one if and only is <i>R</i> is a right or left distributive semiprime ring. We give examples that Theorem 2 is not true for arbitrary rings. |
format |
article |
author |
Askar Tuganbaev |
author_facet |
Askar Tuganbaev |
author_sort |
Askar Tuganbaev |
title |
On Rings of Weak Global Dimension at Most One |
title_short |
On Rings of Weak Global Dimension at Most One |
title_full |
On Rings of Weak Global Dimension at Most One |
title_fullStr |
On Rings of Weak Global Dimension at Most One |
title_full_unstemmed |
On Rings of Weak Global Dimension at Most One |
title_sort |
on rings of weak global dimension at most one |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/5c5cf4efd24047c2b07073b2729c4f6f |
work_keys_str_mv |
AT askartuganbaev onringsofweakglobaldimensionatmostone |
_version_ |
1718431887291056128 |