On Rings of Weak Global Dimension at Most One
A ring <i>R</i> is of weak global dimension at most one if all submodules of flat <i>R</i>-modules are flat. A ring <i>R</i> is said to be arithmetical (resp., right distributive or left distributive) if the lattice of two-sided ideals (resp., right ideals or left...
Guardado en:
Autor principal: | Askar Tuganbaev |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c5cf4efd24047c2b07073b2729c4f6f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Generalizing unit-regular rings and special clean elements
por: Danchev,Peter V.
Publicado: (2020) -
ON STRUCTURE AND COMMUTATIVITY OF NEAR - RINGS
por: ABUJABAL,H. A. S., et al.
Publicado: (2000) -
Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings
por: Danchev,Peter
Publicado: (2012) -
Relative Gorenstein Dimensions over Triangular Matrix Rings
por: Driss Bennis, et al.
Publicado: (2021) -
On centralizers of standard operator algebras with involution
por: Fošner,Maja, et al.
Publicado: (2013)