Polyvinyl Alcohol Polymer Functionalized Graphene Oxide Decorated with Gadolinium Oxide for Sequestration of Radionuclides from Aqueous Medium: Characterization, Mechanism, and Environmental Feasibility Studies

Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO–Gd) was developed using a simple hydrothermal pro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lakshmi Prasanna Lingamdinne, Janardhan Reddy Koduru, Yoon-Young Chang, Mu. Naushad, Jae-Kyu Yang
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/5c5ff8f95dbb4c01b62251000b505e78
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Uranium (U(VI)) and thorium (Th(IV)) ions produced by the nuclear and mining industries cause water pollution, thereby harming the environment and human health. In this study, gadolinium oxide-decorated polyvinyl alcohol-graphene oxide composite (PGO–Gd) was developed using a simple hydrothermal process to treat U(VI) and Th(IV) ions in water. The developed material was structurally characterized by highly advanced spectroscopy and microscopy techniques. The effects of pH, equilibration time and temperature on both radionuclides (U(VI) and Th(IV)) adsorption by PGO–Gd were examined. The PGO–Gd composite adsorbed both metal ions satisfactorily, with adsorption capacities of 427.50 and 455.0 mg g<sup>−1</sup> at pH 4.0, respectively. The adsorption properties of both metal ions were found to be compatible with the Langmuir and pseudo–second-order kinetic models. Additionally, based on the thermodynamic characteristics, the adsorption was endothermic and spontaneous. Furthermore, the environmental viability of PGO–Gd and its application was demonstrated by studying its reusability in treating spiked surface water. PGO–Gd shows promise as an adsorbent in effectively removing both radionuclides from aqueous solutions.