Multiclass Skin Cancer Classification Using Ensemble of Fine-Tuned Deep Learning Models
Skin cancer is a widespread disease associated with eight diagnostic classes. The diagnosis of multiple types of skin cancer is a challenging task for dermatologists due to the similarity of skin cancer classes in phenotype. The average accuracy of multiclass skin cancer diagnosis is 62% to 80%. The...
Guardado en:
Autores principales: | Nabeela Kausar, Abdul Hameed, Mohsin Sattar, Ramiza Ashraf, Ali Shariq Imran, Muhammad Zain ul Abidin, Ammara Ali |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c6ff192889542f4ae1de6c876d3f22f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PolSAR Data: A Comparative Evaluation
por: Hamid Jafarzadeh, et al.
Publicado: (2021) -
Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods
por: Wang Jie, et al.
Publicado: (2021) -
Ensemble Feed-Forward Neural Network and Support Vector Machine for Prediction of Multiclass Malaria Infection
por: Opeyemi Aderiike Abisoye, et al.
Publicado: (2021) -
Hybrid Wavelet Stacking Ensemble Model for Insulators Contamination Forecasting
por: Stefano Frizzo Stefenon, et al.
Publicado: (2021) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021)