A Bayesian approach for accurate de novo transcriptome assembly
Abstract De novo transcriptome assembly from billions of RNA-seq reads is very challenging due to alternative splicing and various levels of expression, which often leads to incorrect, mis-assembled transcripts. BayesDenovo addresses this problem by using both a read-guided strategy to accurately re...
Guardado en:
Autores principales: | Xu Shi, Xiao Wang, Andrew F. Neuwald, Leena Halakivi-Clarke, Robert Clarke, Jianhua Xuan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5c8b642b39f143d69538c2b2e7bf0e53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
ChIP-GSM: Inferring active transcription factor modules to predict functional regulatory elements.
por: Xi Chen, et al.
Publicado: (2021) -
Identifying intracellular signaling modules and exploring pathways associated with breast cancer recurrence
por: Xi Chen, et al.
Publicado: (2021) -
Accurate long-read de novo assembly evaluation with Inspector
por: Yu Chen, et al.
Publicado: (2021) -
Evaluating characteristics of de novo assembly software on 454 transcriptome data: a simulation approach.
por: Marvin Mundry, et al.
Publicado: (2012) -
RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches.
por: Haikuo Fan, et al.
Publicado: (2013)