Measurement of caveolin-1 densities in the cell membrane for quantification of caveolar deformation after exposure to hypotonic membrane tension

Abstract Caveolae are abundant flask-shaped invaginations of plasma membranes that buffer membrane tension through their deformation. Few quantitative studies on the deformation of caveolae have been reported. Each caveola contains approximately 150 caveolin-1 proteins. In this study, we estimated t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masashi Tachikawa, Nobuhiro Morone, Yosuke Senju, Tadao Sugiura, Kyoko Hanawa-Suetsugu, Atsushi Mochizuki, Shiro Suetsugu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5c8f8d097fbc4ca2b8fdc07dd9c7afa5
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Caveolae are abundant flask-shaped invaginations of plasma membranes that buffer membrane tension through their deformation. Few quantitative studies on the deformation of caveolae have been reported. Each caveola contains approximately 150 caveolin-1 proteins. In this study, we estimated the extent of caveolar deformation by measuring the density of caveolin-1 projected onto a two-dimensional (2D) plane. The caveolin-1 in a flattened caveola is assumed to have approximately one-quarter of the density of the caveolin-1 in a flask-shaped caveola. The proportion of one-quarter-density caveolin-1 increased after increasing the tension of the plasma membrane through hypo-osmotic treatment. The one-quarter-density caveolin-1 was soluble in detergent and formed a continuous population with the caveolin-1 in the caveolae of cells under isotonic culture. The distinct, dispersed lower-density caveolin-1 was soluble in detergent and increased after the application of tension, suggesting that the hypo-osmotic tension induced the dispersion of caveolin-1 from the caveolae, possibly through flattened caveolar intermediates.