Development of a fully automatic deep learning system for L3 selection and body composition assessment on computed tomography
Abstract As sarcopenia research has been gaining emphasis, the need for quantification of abdominal muscle on computed tomography (CT) is increasing. Thus, a fully automated system to select L3 slice and segment muscle in an end-to-end manner is demanded. We aimed to develop a deep learning model (D...
Guardado en:
Autores principales: | Jiyeon Ha, Taeyong Park, Hong-Kyu Kim, Youngbin Shin, Yousun Ko, Dong Wook Kim, Yu Sub Sung, Jiwoo Lee, Su Jung Ham, Seungwoo Khang, Heeryeol Jeong, Kyoyeong Koo, Jeongjin Lee, Kyung Won Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ca3c1fc0916449b9470c19b4f93fb3e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Development of fully automated anterior chamber cell analysis based on image software
por: Tae Seen Kang, et al.
Publicado: (2021) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Chuanbo Wang, et al.
Publicado: (2020) -
Multistage iterative fully automatic partitioning in water distribution systems
por: Tianwei Mu, et al.
Publicado: (2021) -
Automatic Chinese Meme Generation Using Deep Neural Networks
por: Lin Wang, et al.
Publicado: (2021) -
Fully degenerate Bell polynomials associated with degenerate Poisson random variables
por: Kim Hye Kyung
Publicado: (2021)