Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines
Abstract Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training such models. Multiple methods were propos...
Guardado en:
Autores principales: | Krzysztof Koras, Ewa Kizling, Dilafruz Juraeva, Eike Staub, Ewa Szczurek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5ca6b6ee38d84c60b90d71aa1aaab0aa |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reduced efficacy of a Src kinase inhibitor in crowded protein solution
por: Kento Kasahara, et al.
Publicado: (2021) -
An interpretable framework for investigating the neighborhood effect in POI recommendation.
por: Guangchao Yuan, et al.
Publicado: (2021) -
Hydration effects on the efficacy of the Epidermal growth factor receptor kinase inhibitor afatinib
por: Srinivasaraghavan Kannan, et al.
Publicado: (2017) -
Searching for Evidence of Gile’s Effort Models in Retrospective Protocols of Trainee Simultaneous Interpreters
por: Ewa Gumul
Publicado: (2018) -
Anaplastic lymphoma kinase (ALK) inhibitors for second-line therapy of non-small cell lung cancer
por: Berghmans T, et al.
Publicado: (2012)