Interpretable deep recommender system model for prediction of kinase inhibitor efficacy across cancer cell lines
Abstract Computational models for drug sensitivity prediction have the potential to significantly improve personalized cancer medicine. Drug sensitivity assays, combined with profiling of cancer cell lines and drugs become increasingly available for training such models. Multiple methods were propos...
Enregistré dans:
Auteurs principaux: | Krzysztof Koras, Ewa Kizling, Dilafruz Juraeva, Eike Staub, Ewa Szczurek |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5ca6b6ee38d84c60b90d71aa1aaab0aa |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Reduced efficacy of a Src kinase inhibitor in crowded protein solution
par: Kento Kasahara, et autres
Publié: (2021) -
An interpretable framework for investigating the neighborhood effect in POI recommendation.
par: Guangchao Yuan, et autres
Publié: (2021) -
Hydration effects on the efficacy of the Epidermal growth factor receptor kinase inhibitor afatinib
par: Srinivasaraghavan Kannan, et autres
Publié: (2017) -
Searching for Evidence of Gile’s Effort Models in Retrospective Protocols of Trainee Simultaneous Interpreters
par: Ewa Gumul
Publié: (2018) -
Anaplastic lymphoma kinase (ALK) inhibitors for second-line therapy of non-small cell lung cancer
par: Berghmans T, et autres
Publié: (2012)