Silkworm coatomers and their role in tube expansion of posterior silkgland.
<h4>Background</h4>Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological proce...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2010
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5cb7bf72d2d94deb9e8d4b9a46306dde |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5cb7bf72d2d94deb9e8d4b9a46306dde |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5cb7bf72d2d94deb9e8d4b9a46306dde2021-11-18T07:03:27ZSilkworm coatomers and their role in tube expansion of posterior silkgland.1932-620310.1371/journal.pone.0013252https://doaj.org/article/5cb7bf72d2d94deb9e8d4b9a46306dde2010-10-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/20967265/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.<h4>Methodology/principal findings</h4>Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α, β, β', δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β'- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion.<h4>Conclusions/significance</h4>The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor.Qiao WangBirong ShenPengli ZhengHui FengLiang ChenJing ZhangChuanxi ZhangGuozheng ZhangJunlin TengJianguo ChenPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 5, Iss 10, p e13252 (2010) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Qiao Wang Birong Shen Pengli Zheng Hui Feng Liang Chen Jing Zhang Chuanxi Zhang Guozheng Zhang Junlin Teng Jianguo Chen Silkworm coatomers and their role in tube expansion of posterior silkgland. |
description |
<h4>Background</h4>Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.<h4>Methodology/principal findings</h4>Here, to investigate the role of silkworm COPI, we cloned six silkworm COPI subunits (α, β, β', δ, ε, and ζ-COP), determined their peak expression in day 2 in fifth-instar PSG, and visualized the localization of COPI, as a coat complex, with cis-Golgi. By dsRNA injection into silkworm larvae, we suppressed the expression of α-, β'- and γ-COP, and demonstrated that COPI subunits were required for PSG tube expansion. Knockdown of α-COP disrupted the integrity of Golgi apparatus and led to a narrower glandular lumen of the PSG, suggesting that silkworm COPI is essential for PSG tube expansion.<h4>Conclusions/significance</h4>The initial characterization reveals the essential roles of silkworm COPI in PSG. Although silkworm COPI resembles the previously characterized coatomers in other organisms, some surprising findings require further investigation. Therefore, our results suggest the silkworm as a model for studying intracellular transport, and would facilitate the establishment of silkworm PSG as an efficient bioreactor. |
format |
article |
author |
Qiao Wang Birong Shen Pengli Zheng Hui Feng Liang Chen Jing Zhang Chuanxi Zhang Guozheng Zhang Junlin Teng Jianguo Chen |
author_facet |
Qiao Wang Birong Shen Pengli Zheng Hui Feng Liang Chen Jing Zhang Chuanxi Zhang Guozheng Zhang Junlin Teng Jianguo Chen |
author_sort |
Qiao Wang |
title |
Silkworm coatomers and their role in tube expansion of posterior silkgland. |
title_short |
Silkworm coatomers and their role in tube expansion of posterior silkgland. |
title_full |
Silkworm coatomers and their role in tube expansion of posterior silkgland. |
title_fullStr |
Silkworm coatomers and their role in tube expansion of posterior silkgland. |
title_full_unstemmed |
Silkworm coatomers and their role in tube expansion of posterior silkgland. |
title_sort |
silkworm coatomers and their role in tube expansion of posterior silkgland. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2010 |
url |
https://doaj.org/article/5cb7bf72d2d94deb9e8d4b9a46306dde |
work_keys_str_mv |
AT qiaowang silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT birongshen silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT penglizheng silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT huifeng silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT liangchen silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT jingzhang silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT chuanxizhang silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT guozhengzhang silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT junlinteng silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland AT jianguochen silkwormcoatomersandtheirroleintubeexpansionofposteriorsilkgland |
_version_ |
1718423978409721856 |