Exploring gene knockout strategies to identify potential drug targets using genome-scale metabolic models
Abstract Research on new cancer drugs is performed either through gene knockout studies or phenotypic screening of drugs in cancer cell-lines. Both of these approaches are costly and time-consuming. Computational framework, e.g., genome-scale metabolic models (GSMMs), could be a good alternative to...
Guardado en:
Autores principales: | Abhijit Paul, Rajat Anand, Sonali Porey Karmakar, Surender Rawat, Nandadulal Bairagi, Samrat Chatterjee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5cc3d92f081c43a59c89d39d060694cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
CRISPR knockout screening identifies combinatorial drug targets in pancreatic cancer and models cellular drug response
por: Karol Szlachta, et al.
Publicado: (2018) -
Bayesian genome scale modelling identifies thermal determinants of yeast metabolism
por: Gang Li, et al.
Publicado: (2021) -
ReacKnock: identifying reaction deletion strategies for microbial strain optimization based on genome-scale metabolic network.
por: Zixiang Xu, et al.
Publicado: (2013) -
Genome-scale CRISPR-Cas9 knockout screening in hepatocellular carcinoma with lenvatinib resistance
por: Yonggang Lu, et al.
Publicado: (2021) -
Large Scale Metabolic Profiling identifies Novel Steroids linked to Rheumatoid Arthritis
por: Noha A. Yousri, et al.
Publicado: (2017)