A Neural Network-Based TEC Model Capable of Reproducing Nighttime Winter Anomaly
With the availability of fast computing machines, as well as the advancement of machine learning techniques and Big Data algorithms, the development of a more sophisticated total electron content (TEC) model featuring the Nighttime Winter Anomaly (NWA) and other effects is possible and is presented...
Guardado en:
Autores principales: | Marjolijn Adolfs, Mohammed Mainul Hoque |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5cd74ab2b27346bc87f6cab41dbf5435 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Possible Atmosphere and Ionospheric Anomalies of the 2019 Pakistan Earthquake Using Statistical and Machine Learning Procedures on MODIS LST, GPS TEC, and GIM TEC
por: Amna Hafeez, et al.
Publicado: (2021) -
An Ionospheric Anomaly Monitor Based on the One Class Support Vector Algorithm for the Ground-Based Augmentation System
por: Zhen Gao, et al.
Publicado: (2021) -
Estimating Local Inequality from Nighttime Lights
por: Nils B. Weidmann, et al.
Publicado: (2021) -
Effects of Source and Rate of Nitrogen Fertilizer on Yield, Yield Components and Quality of Winter Rapeseed (Brassica napus L.)
por: Öztürk,Özden
Publicado: (2010) -
Comparing DMSP/OLS Stable Nighttime Light With Radiance Calibrated Nighttime Light
por: Zhe Tong, et al.
Publicado: (2021)