Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping
Current methods to generate sequence-function data at large scale are either technically complex or limited to specific applications. Here the authors introduce DNA-based phenotypic recording to overcome these limitations and enable deep learning for accurate prediction of function from sequence.
Guardado en:
Autores principales: | Simon Höllerer, Laetitia Papaxanthos, Anja Cathrin Gumpinger, Katrin Fischer, Christian Beisel, Karsten Borgwardt, Yaakov Benenson, Markus Jeschek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5cdab11544394bd78e7fc3880bbaa8e2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Scalable and accurate deep learning with electronic health records
por: Alvin Rajkomar, et al.
Publicado: (2018) -
Precision multidimensional assay for high-throughput microRNA drug discovery
por: Benjamin Haefliger, et al.
Publicado: (2016) -
SHRiMP: accurate mapping of short color-space reads.
por: Stephen M Rumble, et al.
Publicado: (2009) -
NIBBS-search for fast and accurate prediction of phenotype-biased metabolic systems.
por: Matthew C Schmidt, et al.
Publicado: (2012) -
Prehistoric cooking versus accurate palaeotemperature records in shell midden constituents
por: Peter Müller, et al.
Publicado: (2017)