In situ formation of catalytically active graphene in ethylene photo-epoxidation
In situ studies under working conditions are important in atomic-level elucidation, design, and optimization of industrially relevant catalysts. Here, the authors report an in situ study of an Ag ethylene photo-epoxidation catalyst using surface enhanced Raman scattering, which uncovers an unconvent...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5cf103623312497f83d265964e2d51f5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In situ studies under working conditions are important in atomic-level elucidation, design, and optimization of industrially relevant catalysts. Here, the authors report an in situ study of an Ag ethylene photo-epoxidation catalyst using surface enhanced Raman scattering, which uncovers an unconventional mechanism. |
---|