Spaceborne GNSS-R for Sea Ice Classification Using Machine Learning Classifiers
The knowledge of Arctic Sea ice coverage is of particular importance in studies of climate change. This study develops a new sea ice classification approach based on machine learning (ML) classifiers through analyzing spaceborne GNSS-R features derived from the TechDemoSat-1 (TDS-1) data collected o...
Guardado en:
Autores principales: | Yongchao Zhu, Tingye Tao, Jiangyang Li, Kegen Yu, Lei Wang, Xiaochuan Qu, Shuiping Li, Maximilian Semmling, Jens Wickert |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d11d8932e054122aa37734b61c7d9f1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Recent Progress on Vegetation Remote Sensing Using Spaceborne GNSS-Reflectometry
por: Xuerui Wu, et al.
Publicado: (2021) -
Daily Flood Monitoring Based on Spaceborne GNSS-R Data: A Case Study on Henan, China
por: Wentao Yang, et al.
Publicado: (2021) -
Measuring Coastal Absolute Sea-Level Changes Using GNSS Interferometric Reflectometry
por: Dongju Peng, et al.
Publicado: (2021) -
Sea Ice Monitoring with CFOSAT Scatterometer Measurements Using Random Forest Classifier
por: Xiaochun Zhai, et al.
Publicado: (2021) -
Remote Sensing of the Polar Ice Zones with HF Radar
por: Stuart Anderson
Publicado: (2021)