Replication of machine learning methods to predict treatment outcome with antidepressant medications in patients with major depressive disorder from STAR*D and CAN-BIND-1.
<h4>Objectives</h4>Antidepressants are first-line treatments for major depressive disorder (MDD), but 40-60% of patients will not respond, hence, predicting response would be a major clinical advance. Machine learning algorithms hold promise to predict treatment outcomes based on clinica...
Guardado en:
Autores principales: | John-Jose Nunez, Teyden T Nguyen, Yihan Zhou, Bo Cao, Raymond T Ng, Jun Chen, Benicio N Frey, Roumen Milev, Daniel J Müller, Susan Rotzinger, Claudio N Soares, Rudolf Uher, Sidney H Kennedy, Raymond W Lam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d186a23528749dc9f493afd848fde3f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Metabolomic signatures associated with depression and predictors of antidepressant response in humans: A CAN-BIND-1 report
por: Giorgia Caspani, et al.
Publicado: (2021) -
MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes
por: Juan Pablo Lopez, et al.
Publicado: (2017) -
GPR56/ADGRG1 is associated with response to antidepressant treatment
por: Raoul Belzeaux, et al.
Publicado: (2020) -
Standardization of electroencephalography for multi-site, multi-platform and multi-investigator studies: insights from the canadian biomarker integration network in depression
por: Faranak Farzan, et al.
Publicado: (2017) -
Comparative efficacy of escitalopram in the treatment of major depressive disorder
por: Mazen K Ali, et al.
Publicado: (2011)