Conditional Deep Gaussian Processes: Empirical Bayes Hyperdata Learning
It is desirable to combine the expressive power of deep learning with Gaussian Process (GP) in one expressive Bayesian learning model. Deep kernel learning showed success as a deep network used for feature extraction. Then, a GP was used as the function model. Recently, it was suggested that, albeit...
Guardado en:
Autores principales: | Chi-Ken Lu, Patrick Shafto |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d1c5ce622554acebb7962393986c328 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Chi-Ken Lu, et al.
Publicado: (2021) -
Sampling the Variational Posterior with Local Refinement
por: Marton Havasi, et al.
Publicado: (2021) -
Gaussian states of continuous-variable quantum systems provide universal and versatile reservoir computing
por: Johannes Nokkala, et al.
Publicado: (2021) -
Fast Approximations of the Jeffreys Divergence between Univariate Gaussian Mixtures via Mixture Conversions to Exponential-Polynomial Distributions
por: Frank Nielsen
Publicado: (2021) -
An Application for Aesthetic Quality Assessment in Photography with Interpretability Features
por: Fernando Rubio Perona, et al.
Publicado: (2021)