Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates

Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.

Guardado en:
Detalles Bibliográficos
Autores principales: Giorgio Pesciullesi, Philippe Schwaller, Teodoro Laino, Jean-Louis Reymond
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.