Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5d394ff268c64ce3b0faabdee491f557 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5d394ff268c64ce3b0faabdee491f5572021-12-02T17:27:20ZTransfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates10.1038/s41467-020-18671-72041-1723https://doaj.org/article/5d394ff268c64ce3b0faabdee491f5572020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18671-7https://doaj.org/toc/2041-1723Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.Giorgio PesciullesiPhilippe SchwallerTeodoro LainoJean-Louis ReymondNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Giorgio Pesciullesi Philippe Schwaller Teodoro Laino Jean-Louis Reymond Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
description |
Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations. |
format |
article |
author |
Giorgio Pesciullesi Philippe Schwaller Teodoro Laino Jean-Louis Reymond |
author_facet |
Giorgio Pesciullesi Philippe Schwaller Teodoro Laino Jean-Louis Reymond |
author_sort |
Giorgio Pesciullesi |
title |
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
title_short |
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
title_full |
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
title_fullStr |
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
title_full_unstemmed |
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
title_sort |
transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557 |
work_keys_str_mv |
AT giorgiopesciullesi transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates AT philippeschwaller transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates AT teodorolaino transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates AT jeanlouisreymond transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates |
_version_ |
1718380790312599552 |