Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates

Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.

Guardado en:
Detalles Bibliográficos
Autores principales: Giorgio Pesciullesi, Philippe Schwaller, Teodoro Laino, Jean-Louis Reymond
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d394ff268c64ce3b0faabdee491f557
record_format dspace
spelling oai:doaj.org-article:5d394ff268c64ce3b0faabdee491f5572021-12-02T17:27:20ZTransfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates10.1038/s41467-020-18671-72041-1723https://doaj.org/article/5d394ff268c64ce3b0faabdee491f5572020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18671-7https://doaj.org/toc/2041-1723Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.Giorgio PesciullesiPhilippe SchwallerTeodoro LainoJean-Louis ReymondNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-8 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Giorgio Pesciullesi
Philippe Schwaller
Teodoro Laino
Jean-Louis Reymond
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
description Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.
format article
author Giorgio Pesciullesi
Philippe Schwaller
Teodoro Laino
Jean-Louis Reymond
author_facet Giorgio Pesciullesi
Philippe Schwaller
Teodoro Laino
Jean-Louis Reymond
author_sort Giorgio Pesciullesi
title Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
title_short Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
title_full Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
title_fullStr Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
title_full_unstemmed Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
title_sort transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557
work_keys_str_mv AT giorgiopesciullesi transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates
AT philippeschwaller transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates
AT teodorolaino transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates
AT jeanlouisreymond transferlearningenablesthemoleculartransformertopredictregioandstereoselectivereactionsoncarbohydrates
_version_ 1718380790312599552