Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
Organic reactions can readily be learned by deep learning models, however, stereochemistry is still a challenge. Here, the authors fine tune a general model using a small dataset, then predict and validate experimentally regio- and stereo-selectivity for various carbohydrates transformations.
Guardado en:
Autores principales: | Giorgio Pesciullesi, Philippe Schwaller, Teodoro Laino, Jean-Louis Reymond |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d394ff268c64ce3b0faabdee491f557 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Integrated redox-active reagents for photoinduced regio- and stereoselective fluorocarboborylation
por: Weigang Zhang, et al.
Publicado: (2020) -
REGIO AND STEREOSELECTIVE HYDROXYLATION OF A-AGAROFURAN BY BIOTRANSFORMATION OF RHIZOPUS NIGRICANS
por: ALARCÓN,JULIO, et al.
Publicado: (2005) -
A Chiron approach towards the stereoselective synthesis of polyfluorinated carbohydrates
por: Vincent Denavit, et al.
Publicado: (2018) -
Inferring experimental procedures from text-based representations of chemical reactions
por: Alain C. Vaucher, et al.
Publicado: (2021) -
Author Correction: Regio- and stereoselective synthesis of tetra- and triarylethenes by N-methylimidodiacetyl boron-directed palladium-catalysed three-component coupling
por: E. Emily Lin, et al.
Publicado: (2019)