Privacy‐preserving evaluation for support vector clustering
Abstract The authors proposed a privacy‐preserving evaluation algorithm for support vector clustering with a fully homomorphic encryption. The proposed method assigns clustering labels to encrypted test data with an encrypted support function. This method inherits the advantageous properties of supp...
Guardado en:
Autores principales: | J. Byun, J. Lee, S. Park |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d416729c1f94f82a017a07e80e0162e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Sport Location-Based User Clustering With Privacy-Preservation in Wireless IoT-Driven Healthcare
por: Qiyun Zhang, et al.
Publicado: (2021) -
Federated Learning for Privacy-Preserving Speaker Recognition
por: Abraham Woubie, et al.
Publicado: (2021) -
Review: Privacy-Preservation in the Context of Natural Language Processing
por: Darshini Mahendran, et al.
Publicado: (2021) -
A Survey on Privacy-Preserving Authentication Schemes in VANETs: Attacks, Challenges and Open Issues
por: Sagheer Ahmed Jan, et al.
Publicado: (2021) -
RcDT: Privacy Preservation Based on R-Constrained Dummy Trajectory in Mobile Social Networks
por: Jinquan Zhang, et al.
Publicado: (2019)