Privacy‐preserving evaluation for support vector clustering
Abstract The authors proposed a privacy‐preserving evaluation algorithm for support vector clustering with a fully homomorphic encryption. The proposed method assigns clustering labels to encrypted test data with an encrypted support function. This method inherits the advantageous properties of supp...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d416729c1f94f82a017a07e80e0162e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sea el primero en dejar un comentario!