An OGC web service geospatial data semantic similarity model for improving geospatial service discovery

Open Geospatial Consortium (OGC) Web Services (OWS) are highly significant for geospatial data sharing and widely used in many scientific fields. However, those services are hard to find and utilize effectively. Focusing on addressing the big challenge of OWS resource discovery, we propose a measure...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Miao Lizhi, Liu Chengliang, Fan Li, Kwan Mei-Po
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/5d450eb8c1634fd18f5268b1de96f8b3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d450eb8c1634fd18f5268b1de96f8b3
record_format dspace
spelling oai:doaj.org-article:5d450eb8c1634fd18f5268b1de96f8b32021-12-05T14:10:48ZAn OGC web service geospatial data semantic similarity model for improving geospatial service discovery2391-544710.1515/geo-2020-0232https://doaj.org/article/5d450eb8c1634fd18f5268b1de96f8b32021-02-01T00:00:00Zhttps://doi.org/10.1515/geo-2020-0232https://doaj.org/toc/2391-5447Open Geospatial Consortium (OGC) Web Services (OWS) are highly significant for geospatial data sharing and widely used in many scientific fields. However, those services are hard to find and utilize effectively. Focusing on addressing the big challenge of OWS resource discovery, we propose a measurement model that integrates spatiotemporal similarity and thematic similarity based on ontology semantics to generate a more efficient search method: OWS Geospatial Data Semantic Similarity Model (OGDSSM)-based search engine for semantically enabled geospatial data service discovery that takes into account the hierarchy difference of geospatial service documents and the number of map layers. We implemented the proposed OGDSSM-based semantic search algorithm on United States Geological Survey mineral resources geospatial service discovery. The results show that the proposed search method has better performance than the existing search engines that are based on keyword-based matching, such as Lucene, when recall, precision, and F-measure are taken into consideration. Furthermore, the returned results are ranked based on semantic similarity, which makes it easier for users to find the most similar geospatial data services. Our proposed method can thus enhance the performance of geospatial data service discovery for a wide range of geoscience applications.Miao LizhiLiu ChengliangFan LiKwan Mei-PoDe Gruyterarticleontologyogc web servicegeospatial semanticsemantic similaritygeospatial queryGeologyQE1-996.5ENOpen Geosciences, Vol 13, Iss 1, Pp 245-261 (2021)
institution DOAJ
collection DOAJ
language EN
topic ontology
ogc web service
geospatial semantic
semantic similarity
geospatial query
Geology
QE1-996.5
spellingShingle ontology
ogc web service
geospatial semantic
semantic similarity
geospatial query
Geology
QE1-996.5
Miao Lizhi
Liu Chengliang
Fan Li
Kwan Mei-Po
An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
description Open Geospatial Consortium (OGC) Web Services (OWS) are highly significant for geospatial data sharing and widely used in many scientific fields. However, those services are hard to find and utilize effectively. Focusing on addressing the big challenge of OWS resource discovery, we propose a measurement model that integrates spatiotemporal similarity and thematic similarity based on ontology semantics to generate a more efficient search method: OWS Geospatial Data Semantic Similarity Model (OGDSSM)-based search engine for semantically enabled geospatial data service discovery that takes into account the hierarchy difference of geospatial service documents and the number of map layers. We implemented the proposed OGDSSM-based semantic search algorithm on United States Geological Survey mineral resources geospatial service discovery. The results show that the proposed search method has better performance than the existing search engines that are based on keyword-based matching, such as Lucene, when recall, precision, and F-measure are taken into consideration. Furthermore, the returned results are ranked based on semantic similarity, which makes it easier for users to find the most similar geospatial data services. Our proposed method can thus enhance the performance of geospatial data service discovery for a wide range of geoscience applications.
format article
author Miao Lizhi
Liu Chengliang
Fan Li
Kwan Mei-Po
author_facet Miao Lizhi
Liu Chengliang
Fan Li
Kwan Mei-Po
author_sort Miao Lizhi
title An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
title_short An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
title_full An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
title_fullStr An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
title_full_unstemmed An OGC web service geospatial data semantic similarity model for improving geospatial service discovery
title_sort ogc web service geospatial data semantic similarity model for improving geospatial service discovery
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/5d450eb8c1634fd18f5268b1de96f8b3
work_keys_str_mv AT miaolizhi anogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT liuchengliang anogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT fanli anogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT kwanmeipo anogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT miaolizhi ogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT liuchengliang ogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT fanli ogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
AT kwanmeipo ogcwebservicegeospatialdatasemanticsimilaritymodelforimprovinggeospatialservicediscovery
_version_ 1718371723547508736