A deep learning technique-based automatic monitoring method for experimental urban road inundation
Reports indicate that high-cost, insecurity, and difficulty in complex environments hinder the traditional urban road inundation monitoring approach. This work proposed an automatic monitoring method for experimental urban road inundation based on the YOLOv2 deep learning framework. The proposed met...
Guardado en:
Autores principales: | Hao Han, Jingming Hou, Ganggang Bai, Bingyao Li, Tian Wang, Xuan Li, Xujun Gao, Feng Su, Zhaofeng Wang, Qiuhua Liang, Jiahui Gong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IWA Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d590c7ea31d433e84cc85b3ed3e699d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
YOLO Algorithm for Detecting People in Social Distancing System
por: Faisal Dharma Adhinata, et al.
Publicado: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
por: V. Golovachyova, et al.
Publicado: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
por: Dedy Kurniadi, et al.
Publicado: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
por: Tavishee Chauhan, M.E, et al.
Publicado: (2021) -
DESIGNING DIGITAL CONTROLLERS FOR A CONTROLLED PLANT
por: A. Khaimuldin, et al.
Publicado: (2020)