A deep learning technique-based automatic monitoring method for experimental urban road inundation
Reports indicate that high-cost, insecurity, and difficulty in complex environments hinder the traditional urban road inundation monitoring approach. This work proposed an automatic monitoring method for experimental urban road inundation based on the YOLOv2 deep learning framework. The proposed met...
Enregistré dans:
Auteurs principaux: | Hao Han, Jingming Hou, Ganggang Bai, Bingyao Li, Tian Wang, Xuan Li, Xujun Gao, Feng Su, Zhaofeng Wang, Qiuhua Liang, Jiahui Gong |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5d590c7ea31d433e84cc85b3ed3e699d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
YOLO Algorithm for Detecting People in Social Distancing System
par: Faisal Dharma Adhinata, et autres
Publié: (2021) -
THE EXPERT SYSTEM OF CONTROL AND KNOWLEDGE ASSESSMENT
par: V. Golovachyova, et autres
Publié: (2020) -
Pattern Recognition of Human Face With Photos Using KNN Algorithm
par: Dedy Kurniadi, et autres
Publié: (2021) -
Optimization and improvement of fake news detection using deep learning approaches for societal benefit
par: Tavishee Chauhan, M.E, et autres
Publié: (2021) -
DESIGNING DIGITAL CONTROLLERS FOR A CONTROLLED PLANT
par: A. Khaimuldin, et autres
Publié: (2020)