The National Institutes of Health funding for clinical research applying machine learning techniques in 2017

Abstract Machine learning (ML) techniques have become ubiquitous and indispensable for solving intricate problems in most disciplines. To determine the extent of funding for clinical research projects applying ML techniques by the National Institutes of Health (NIH) in 2017, we searched the NIH Rese...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amarnath R. Annapureddy, Suveen Angraal, Cesar Caraballo, Alyssa Grimshaw, Chenxi Huang, Bobak J. Mortazavi, Harlan M. Krumholz
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Acceso en línea:https://doaj.org/article/5d663544ee95447093c353e2803ba34a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5d663544ee95447093c353e2803ba34a
record_format dspace
spelling oai:doaj.org-article:5d663544ee95447093c353e2803ba34a2021-12-02T14:28:20ZThe National Institutes of Health funding for clinical research applying machine learning techniques in 201710.1038/s41746-020-0223-92398-6352https://doaj.org/article/5d663544ee95447093c353e2803ba34a2020-01-01T00:00:00Zhttps://doi.org/10.1038/s41746-020-0223-9https://doaj.org/toc/2398-6352Abstract Machine learning (ML) techniques have become ubiquitous and indispensable for solving intricate problems in most disciplines. To determine the extent of funding for clinical research projects applying ML techniques by the National Institutes of Health (NIH) in 2017, we searched the NIH Research Portfolio Online Reporting Tools Expenditures and Results (RePORTER) system using relevant keywords. We identified 535 projects, which together received a total of $264 million, accounting for 2% of the NIH extramural budget for clinical research.Amarnath R. AnnapureddySuveen AngraalCesar CaraballoAlyssa GrimshawChenxi HuangBobak J. MortazaviHarlan M. KrumholzNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 3, Iss 1, Pp 1-4 (2020)
institution DOAJ
collection DOAJ
language EN
topic Computer applications to medicine. Medical informatics
R858-859.7
spellingShingle Computer applications to medicine. Medical informatics
R858-859.7
Amarnath R. Annapureddy
Suveen Angraal
Cesar Caraballo
Alyssa Grimshaw
Chenxi Huang
Bobak J. Mortazavi
Harlan M. Krumholz
The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
description Abstract Machine learning (ML) techniques have become ubiquitous and indispensable for solving intricate problems in most disciplines. To determine the extent of funding for clinical research projects applying ML techniques by the National Institutes of Health (NIH) in 2017, we searched the NIH Research Portfolio Online Reporting Tools Expenditures and Results (RePORTER) system using relevant keywords. We identified 535 projects, which together received a total of $264 million, accounting for 2% of the NIH extramural budget for clinical research.
format article
author Amarnath R. Annapureddy
Suveen Angraal
Cesar Caraballo
Alyssa Grimshaw
Chenxi Huang
Bobak J. Mortazavi
Harlan M. Krumholz
author_facet Amarnath R. Annapureddy
Suveen Angraal
Cesar Caraballo
Alyssa Grimshaw
Chenxi Huang
Bobak J. Mortazavi
Harlan M. Krumholz
author_sort Amarnath R. Annapureddy
title The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
title_short The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
title_full The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
title_fullStr The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
title_full_unstemmed The National Institutes of Health funding for clinical research applying machine learning techniques in 2017
title_sort national institutes of health funding for clinical research applying machine learning techniques in 2017
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/5d663544ee95447093c353e2803ba34a
work_keys_str_mv AT amarnathrannapureddy thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT suveenangraal thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT cesarcaraballo thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT alyssagrimshaw thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT chenxihuang thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT bobakjmortazavi thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT harlanmkrumholz thenationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT amarnathrannapureddy nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT suveenangraal nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT cesarcaraballo nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT alyssagrimshaw nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT chenxihuang nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT bobakjmortazavi nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
AT harlanmkrumholz nationalinstitutesofhealthfundingforclinicalresearchapplyingmachinelearningtechniquesin2017
_version_ 1718391254340861952