Hybrid Clustering of Single-Cell Gene Expression and Spatial Information via Integrated NMF and K-Means
Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integratio...
Guardado en:
Autores principales: | Sooyoun Oh, Haesun Park, Xiuwei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d7ec78a9dea4e1db4d2afb01d8c0e67 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Emerging Technologies to Study the Glomerular Filtration Barrier
por: Emma Gong, et al.
Publicado: (2021) -
Single-Cell Approaches to Deconvolute the Development of HSCs
por: Yang Xiang, et al.
Publicado: (2021) -
FEM: mining biological meaning from cell level in single-cell RNA sequencing data
por: Yunqing Liu, et al.
Publicado: (2021) -
Dissecting the single-cell transcriptomeunderlying chronic liver injury
por: Junjun Wang, et al.
Publicado: (2021) -
Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells
por: Nasna Nassir, et al.
Publicado: (2021)