Hybrid Clustering of Single-Cell Gene Expression and Spatial Information via Integrated NMF and K-Means
Advances in single cell transcriptomics have allowed us to study the identity of single cells. This has led to the discovery of new cell types and high resolution tissue maps of them. Technologies that measure multiple modalities of such data add more detail, but they also complicate data integratio...
Enregistré dans:
Auteurs principaux: | Sooyoun Oh, Haesun Park, Xiuwei Zhang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Frontiers Media S.A.
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5d7ec78a9dea4e1db4d2afb01d8c0e67 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Emerging Technologies to Study the Glomerular Filtration Barrier
par: Emma Gong, et autres
Publié: (2021) -
Single-Cell Approaches to Deconvolute the Development of HSCs
par: Yang Xiang, et autres
Publié: (2021) -
FEM: mining biological meaning from cell level in single-cell RNA sequencing data
par: Yunqing Liu, et autres
Publié: (2021) -
Dissecting the single-cell transcriptomeunderlying chronic liver injury
par: Junjun Wang, et autres
Publié: (2021) -
Single-cell transcriptome identifies molecular subtype of autism spectrum disorder impacted by de novo loss-of-function variants regulating glial cells
par: Nasna Nassir, et autres
Publié: (2021)