Fault detection of industrial process based on ensemble kernel entropy component analysis algorithm
To solve the problem caused by kernel entropy component analysis (KECA) for selecting the same kernel parameters for different faults,a fault detection of industrial process based on ensemble kernel entropy component analysis (EKECA) was proposed.Firstly,a series of kernel functions with different w...
Guardado en:
Autores principales: | Jinyu GUO, Wenjun ZHAO, Yuan LI |
---|---|
Formato: | article |
Lenguaje: | ZH |
Publicado: |
Hebei University of Science and Technology
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5d81e46cb4ae45be968e1cc56ba0008d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fault detection algorithm of industrial process based on DW-ICA-SVM
por: Jinyu GUO, et al.
Publicado: (2021) -
An Enhanced Ensemble Learning-Based Fault Detection and Diagnosis for Grid-Connected PV Systems
por: Khaled Dhibi, et al.
Publicado: (2021) -
A Highly Accurate NILM: With an Electro-Spectral Space That Best Fits Algorithm’s National Deployment Requirements
por: Netzah Calamaro, et al.
Publicado: (2021) -
An Analysis of the Operation of Distribution Networks Using Kernel Density Estimators
por: Mirosław Kornatka, et al.
Publicado: (2021) -
On kernels by rainbow paths in arc-coloured digraphs
por: Li Ruijuan, et al.
Publicado: (2021)