AriaNN: Low-Interaction Privacy-Preserving Deep Learning via Function Secret Sharing
We propose AriaNN, a low-interaction privacy-preserving framework for private neural network training and inference on sensitive data.
Enregistré dans:
Auteurs principaux: | Ryffel Théo, Tholoniat Pierre, Pointcheval David, Bach Francis |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Sciendo
2022
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/5d826b5e3d9b49df9f7ebc14cb47bd78 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Privacy-preserving FairSwap: Fairness and privacy interplay
par: Avizheh Sepideh, et autres
Publié: (2022) -
Privacy-Preserving High-dimensional Data Collection with Federated Generative Autoencoder
par: Jiang Xue, et autres
Publié: (2022) -
Making the Most of Parallel Composition in Differential Privacy
par: Smith Josh, et autres
Publié: (2022) -
Ulixes: Facial Recognition Privacy with Adversarial Machine Learning
par: Cilloni Thomas, et autres
Publié: (2022) -
Circuit-PSI With Linear Complexity via Relaxed Batch OPPRF
par: Chandran Nishanth, et autres
Publié: (2022)